dc.contributor.author
Hellmund, Katharina S.
dc.contributor.author
Lospichl, Benjamin von
dc.contributor.author
Böttcher, Christoph
dc.contributor.author
Ludwig, Kai
dc.contributor.author
Keiderling, Uwe
dc.contributor.author
Noirez, Laurence
dc.contributor.author
Weiss, Annika
dc.contributor.author
Mikolajczak, Dorian J.
dc.contributor.author
Gradzielski, Michael
dc.contributor.author
Koksch, Beate
dc.date.accessioned
2021-04-07T12:41:28Z
dc.date.available
2021-04-07T12:41:28Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29263
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29010
dc.description.abstract
The development of tailorable and biocompatible three-dimensional (3D) substrates or molecular networks that reliably mimic the extracellular matrix (ECM) and influence cell behavior and growth in vitro is of increasing interest for cell-based applications in the field of tissue engineering and regenerative medicine. In this context, we present a novel coiled coil-based peptide that self-assembles into a 3D-alpha-helical fibril network and functions as a self-supporting hydrogel. By functionalizing distinct coiled-coil peptides with cellular binding motifs or carbohydrate ligands (mannose), and by utilizing the multivalency and modularity of coiled-coil assemblies, tailored artificial ECMs are obtained. Fibrillar network and ligand density, as well as ligand composition can readily be adjusted by changes in water content or peptide concentrations, respectively. Mesoscopic structure of these networks was assessed by rheology and small-angle neutron scattering experiments. Initial cell viability studies using NIH/3T3 cells showed comparable or even superior cell viability using the presented artificial ECMs, compared to commercially available 3D-cell culture scaffold Matrigel. The herein reported approach presents a reliable (low batch-to-batch variation) and modular pathway toward biocompatible and tailored artificial ECMs.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
extracellular matrix
en
dc.subject
peptide hydrogel
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Functionalized peptide hydrogels as tunable extracellular matrix mimics for biological applications
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e24201
dcterms.bibliographicCitation.doi
10.1002/pep2.24201
dcterms.bibliographicCitation.journaltitle
Peptide Science
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
113
dcterms.bibliographicCitation.url
https://doi.org/10.1002/pep2.24201
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2475-8817
refubium.resourceType.provider
WoS-Alert