dc.contributor.author
Wolbeck, Lena
dc.contributor.author
Seyer, Benedict
dc.date.accessioned
2020-11-26T12:11:13Z
dc.date.available
2020-11-26T12:11:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28967
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28717
dc.description.abstract
Staff rostering is a crucial task in inbound call centers, as personnel costs usually account for the largest share of operating costs. Uncertainty of capacity, such as the presence of agents is often disregarded during rostering. This paper addresses the problem of uncertainty by using predictive analytics to predict agent absences and thus increase roster robustness. Operational data from four years of a call center serves as a basis for our use case. Predictors include characteristics of the service agents such as attendance history and regular working hours as well as other factors such as the weekday. Of the prediction algorithms tested, decision trees outperform other predictive modeling approaches. Evaluation based on an expected value framework shows that the predictive analytics approach performs best compared to the planned, unchanged roster and a general staff surcharge of 10%.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Staff rostering
en
dc.subject
Uncertainty of capacity
en
dc.subject
Decision tree
en
dc.subject
Predictive modeling
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::331 Arbeitsökonomie
dc.title
Predictive Analytics to Increase Roster Robustness in an Inbound Call Center
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.35840/2633-8947/6507
dcterms.bibliographicCitation.journaltitle
International Journal of Industrial and Operations Research
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
VIBGYOR ePress
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.35840/2633-8947/6507
refubium.affiliation
Wirtschaftswissenschaft
refubium.funding
Publikationsfonds FU
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin finanziert.
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2633-8947