dc.contributor.author
Das, Shagnik
dc.contributor.author
Morris, Patrick
dc.contributor.author
Treglown, Andrew
dc.date.accessioned
2020-11-11T13:17:54Z
dc.date.available
2020-11-11T13:17:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28833
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28582
dc.description.abstract
Given graphs F, H and G, we say that G is (F, H)(v)-Ramsey if every red/blue vertex coloring of G contains a red copy of F or a blue copy of H. Results of Luczak, Rucinski and Voigt, and Kreuter determine the threshold for the property that the random graph G(n, p) is (F, H)(v)-Ramsey. In this paper we consider the sister problem in the setting ofrandomly perturbed graphs. In particular, we determine how many random edges one needs to add to a dense graph to ensure that with high probability the resulting graph is (F, H)(v)-Ramsey for all pairs (F, H) that involve at least one clique.
en
dc.format.extent
24 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Ramsey theory
en
dc.subject
random graphs
en
dc.subject
randomly perturbed structures
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Vertex Ramsey properties of randomly perturbed graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/rsa.20971
dcterms.bibliographicCitation.journaltitle
Random Structures and Algorithms
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
983
dcterms.bibliographicCitation.pageend
1006
dcterms.bibliographicCitation.volume
57
dcterms.bibliographicCitation.url
https://doi.org/10.1002/rsa.20971
refubium.affiliation
Mathematik und Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1098-2418
refubium.resourceType.provider
WoS-Alert