dc.contributor.author
Joseph, Jan F.
dc.contributor.author
Gronbach, Leonie
dc.contributor.author
García-Miller, Jill
dc.contributor.author
Cruz, Leticia M.
dc.contributor.author
Wuest, Bernhard
dc.contributor.author
Keilholz, Ulrich
dc.contributor.author
Zoschke, Christian
dc.contributor.author
Parr, Maria K.
dc.date.accessioned
2020-10-29T12:02:21Z
dc.date.available
2020-10-29T12:02:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28707
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28455
dc.description.abstract
Cancer treatment often lacks individual dose adaptation, contributing to insufficient efficacy and severe side effects. Thus, personalized approaches are highly desired. Although various analytical techniques are established to determine drug levels in preclinical models, they are limited in the automated real-time acquisition of pharmacokinetic profiles. Therefore, an online UHPLC-MS/MS system for quantitation of drug concentrations within 3D tumor oral mucosa models was generated. The integration of sampling ports into the 3D tumor models and their culture inside the autosampler allowed for real-time pharmacokinetic profiling without additional sample preparation. Docetaxel quantitation was validated according to EMA guidelines. The tumor models recapitulated the morphology of head-and-neck cancer and the dose-dependent tumor reduction following docetaxel treatment. The administration of four different docetaxel concentrations resulted in comparable courses of concentration versus time curves for 96 h. In conclusion, this proof-of-concept study demonstrated the feasibility of real-time monitoring of drug levels in 3D tumor models without any sample preparation. The inclusion of patient-derived tumor cells into our models may further optimize the pharmacotherapy of cancer patients by efficiently delivering personalized data of the target tissue.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
automatization
en
dc.subject
drug absorption
en
dc.subject
head-and-neck cancer
en
dc.subject
pharmacokinetics
en
dc.subject
real-time measurements
en
dc.subject
tissue engineering
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::615 Pharmakologie, Therapeutik
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.title
Automated Real-Time Tumor Pharmacokinetic Profiling in 3D Models: A Novel Approach for Personalized Medicine
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
413
dcterms.bibliographicCitation.doi
10.3390/pharmaceutics12050413
dcterms.bibliographicCitation.journaltitle
Pharmaceutics
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.3390/pharmaceutics12050413
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1999-4923