dc.contributor.author
Helfmann, Luzie
dc.contributor.author
Ribera Borrell, Enric
dc.contributor.author
Schütte, Christof
dc.contributor.author
Koltai, Péter
dc.date.accessioned
2020-11-05T14:21:45Z
dc.date.available
2020-11-05T14:21:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28604
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28353
dc.description.abstract
Given two distinct subsets A, B in the state space of some dynamical system, transition path theory (TPT) was successfully used to describe the statistical behavior of transitions from A to B in the ergodic limit of the stationary system.We derive generalizations of TPT that remove the requirements of stationarity and of the ergodic limit and provide this powerful tool for the analysis of other dynamical scenarios: periodically forced dynamics and time-dependent finite-time systems. This is partially motivated by studying applications such as climate, ocean, and social dynamics. On simple model examples, we show how the new tools are able to deliver quantitative understanding about the statistical behavior of such systems.We also point out explicit cases where the more general dynamical regimes show different behaviors to their stationary counterparts, linking these tools directly to bifurcations in non-deterministic systems.
en
dc.format.extent
46 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Transition path theory
en
dc.subject
Markov chains
en
dc.subject
Time-inhomogeneous process
en
dc.subject
Periodic driving
en
dc.subject
Finite-time dynamics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Extending Transition Path Theory: Periodically Driven and Finite-Time Dynamics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00332-020-09652-7
dcterms.bibliographicCitation.journaltitle
Journal of Nonlinear Science
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.pagestart
3321
dcterms.bibliographicCitation.pageend
3366
dcterms.bibliographicCitation.volume
30
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00332-020-09652-7
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0938-8974
dcterms.isPartOf.eissn
1432-1467
refubium.resourceType.provider
WoS-Alert