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Abstract
Given two distinct subsets A, B in the state space of some dynamical system, tran-
sition path theory (TPT) was successfully used to describe the statistical behavior of
transitions from A to B in the ergodic limit of the stationary system. We derive gener-
alizations of TPT that remove the requirements of stationarity and of the ergodic limit
and provide this powerful tool for the analysis of other dynamical scenarios: peri-
odically forced dynamics and time-dependent finite-time systems. This is partially
motivated by studying applications such as climate, ocean, and social dynamics. On
simple model examples, we show how the new tools are able to deliver quantitative
understanding about the statistical behavior of such systems.We also point out explicit
cases where the more general dynamical regimes show different behaviors to their sta-
tionary counterparts, linking these tools directly to bifurcations in non-deterministic
systems.
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1 Introduction

The understanding of when and how dynamical transitions, such as tipping processes,
happen is important formany systems from physics, biology (Noé et al. 2009), ecology
(Scheffer et al. 2001; Hastings et al. 2018), the climate (Lenton et al. 2008; Lenton
2013), and the social sciences (Nyborg et al. 2016; Otto et al. 2020).

If the system dynamics can be modeled by a stationary Markov process running for
infinite time, transition path theory (TPT) provides a rigorous approach for studying
the transitions from one subset A to another subset B of the state space. The main
tool of transition path theory (Weinan and Vanden-Eijnden 2006; Metzner et al. 2009)
is the forward and backward committor probabilities telling us the probability of the
Markov process to next commit to (i.e., hit) B relative to A, either forward or backward
in time. Given these committor probabilities, one can derive important statistics of the
ensemble of reactive trajectories (i.e., of the collection of all possible paths of the
Markov process that start in A and end in B), such as

– the density of reactive trajectories telling us about the bottlenecks during transi-
tions,

– the current of reactive trajectories indicating the most likely transition channels,
– the rate of reactive trajectories leaving A or entering B, and
– the mean duration of reactive trajectories.

Other approaches that characterize the ensemble of transition paths, on the one
hand, place the focus elsewhere: For instance, in transition path sampling (Bolhuis
et al. 2002) one is interested in directly sampling trajectories of the reactive ensemble.
On the other hand, these approaches consider different objects, such as the steepest
descent path (Ulitsky and Elber 1990; Czerminski and Elber 1990; Olender and Elber
1997), the most probable path (Olender and Elber 1996; Elber and Shalloway 2000;
Pinski and Stuart 2010; Faccioli et al. 2010; Beccara et al. 2012) [also in temporal
networks (Ser-Giacomi et al. 2015)], or the first passage path ensemble (von Kleist
et al. 2018) (see also Remark 5.6).

For many physical, especially molecular, systems that are equilibrated and where
transitions happen on a smaller time scale than the observationwindow, the assumption
of a stationary, infinite-time Markov process is reasonable and common practice (Noé
et al. 2009). For illustration, we consider the overdamped Langevin dynamics

dXt = −∇V (Xt )dt + σdWt

in the triplewell landscapeV (x, y) (as in Fig. 1), andwe are interested in the transitions
between thedeepwell A and theother deepwell B. If the noise intensityσ is sufficiently
small, then the system tends to spend long times near local minima of deep wells (this
behavior is called metastability) and transitions predominantly happen across regions
of possibly low values of the potential V (e.g., saddle points). If the system from
Fig. 1 is stationary and has infinite time for transitioning, the transition channel via the
metastable well centered at (0, 1.5) is preferred since the barriers are lower and it does
not matter that transitions take a very long time due to being stuck in the metastable
set.
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(a) (b) (c)

Fig. 1 a Triple well potential landscape with two possible reactive trajectories, i.e., transitions from A to
B, highlighted in black and red. b The effective current of reactive trajectories from A to B in infinite
time; the channel via the well at (0, 1.5) is dominantly taken. c The effective current of reactive trajectories
restricted to a small time window; the transition channel via the direct barrier between A and B is more
likely. More details on the numerical example can be found in Sect. 6, but here we chose a smaller noise
intensity σ = 0.26 (Color figure online)

However, in order to study transitions and tipping paths in different dynamical
contexts (e.g., social systems or climate models) which are often characterized by
time-dependent (e.g., seasonal) dynamics as well as transitions of interest within a
finite-time window, the current theory of transition paths has to be extended.

In these applications, one might, for instance, ask: What are the possible transition
channels from the current state to a desirable and sustainable state of our social or
climate system within the next 30 years (Steffen et al. 2018; Otto et al. 2020)? By
requiring the transitions to depart from A and arrive in B within a finite-time interval,
the affinity of the system taking the different transition channels is altered. This is
visualized in the triple well dynamics, as shown in Fig. 1c, where now only the lower
transition channel passing the high barrier is possible. Whenever the trajectory takes
the channel through the upper metastable set (cf. black trajectory in subfigure (a)),
it is stuck there for a long time and will not reach B anymore within the finite-time
horizon.

Moreover, systems containing human agents are usually time-inhomogeneous and
not equilibrated, while climate systems are often affected by seasonal forcing, raising
questions such as: What are the likely spreading paths of a contagion in a time-
evolving network (Pan and Saramäki 2011; Brockmann and Helbing 2013; Valdano
et al. 2018)? What are bottlenecks in the transient dynamics toward the equilibrium
state (Schonmann 1992; Hollander et al. 2000)? How does tipping occur under the
joint effect of noise and parameter changes (Ashwin et al. 2012; Giorgini et al. 2019)
or periodic forcing (Herrmann et al. 2005)?

In this paper, we generalize TPT to a broader class of dynamical scenarios. In
particular, we focus on two generalizations which we consider as natural but not
exclusive building blocks for these more general cases: (a) periodically forced infinite-
time system and (b) arbitrary time-inhomogeneous finite-time system.

We start in Sect. 2 by formulating the general setting of TPT for Markov chains
(Xn)n∈T on a finite state space1 by introducing time-dependent forward committor

1 Note that we chose Markov chains mostly for simplicity, it is possible to extend the theory to time-
continuous and space-continuous dynamics. Also, using Ulams method (Ulam 1960, see Koltai 2011a for
a summary) any continuous Markov system can be discretized into a Markov chain model.
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functions q+
i (n), giving the probability within the time horizon T to next commit to B

and not A conditional on being in Xn = i , as well as time-dependent backward com-
mittor functions q−

i (n), both of which are needed for computing the desired statistics
of the transitions from A to B.

We then in more detail work out the following main cases.

(i) Under the assumption of stationary, infinite-time dynamics, it is known Weinan
and Vanden-Eijnden (2006), Metzner et al. (2009) that the committor functions
are time-independent q+(n) = q+ by stationarity and solve the following linear
system

⎧
⎪⎨

⎪⎩

q+
i = ∑

j∈S
Pi j q

+
j i ∈ (A ∪ B)c

q+
i = 0 i ∈ A
q+
i = 1 i ∈ B

(1)

where P = (Pi j )i, j∈S is the transition matrix. Similarly, all the transition statis-
tics are time-independent and by ergodicity, the statistics can also be found by
averaging along one infinitely long equilibrium trajectory (Weinan and Vanden-
Eijnden 2006; Metzner et al. 2009). In Sect. 3, we recall the theory (Weinan and
Vanden-Eijnden 2006; Metzner et al. 2009) from a different point of view. Instead
of defining all quantities in terms of trajectory-wise time averages, we prove by
using the Markov property that they can be written in terms of the committors and
the stationary distribution. Further, we extend the theory by Lemma 3.5 decom-
posing the committors into path probabilities.

(ii) In Sect. 4,wederive the committors and transition statistics for periodically varying
dynamicswith a period of lengthM that are equilibrated (i.e., the law of the chain is
also periodic). It follows that the committors are periodically varying q+(n) = q+

m
whenever n = m modulo M , and we show that the committors solve the following
linear system with periodic boundary conditions in time q+

0 = q+
M

⎧
⎪⎪⎨

⎪⎪⎩

q+
m,i = ∑

j∈S
Pm,i j q

+
m+1, j i ∈ (A ∪ B)c

q+
m,i = 0 i ∈ A

q+
m,i = 1 i ∈ B

(2)

where Pm = (Pm,i j )i, j∈S is the transition matrix at time n = m modulo M . This
is consistent with the previous case when choosing a period of length M = 1.

(iii) In Sect. 5, we derive the committor equations and transition statistics for
general time-inhomogeneous Markov chains (Xn)n∈T on a finite-time interval
T = {0, . . . , N − 1} defined by the transition probabilities P(n) = (Pi j (n))i, j∈S
and an initial density λ(0). The forward committor q+(n) for a finite-timeMarkov
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chain satisfies the following iterative system of equations:

⎧
⎪⎨

⎪⎩

q+
i (n) = ∑

j∈S
Pi j (n) q+

j (n + 1) i ∈ (A ∪ B)c

q+
i (n) = 0 i ∈ A
q+
i (n) = 1 i ∈ B

(3)

with final condition q+
i (N − 1) = 1B(i). The transition statistics depend on

the current time point in the time interval and can be related to an average over
the ensemble of reactive trajectories. We also show consistency, i.e., that given a
stationary process on a finite-time interval, the committors and statistics converge
to their classical counterparts (i) in the infinite time limit.

We note that in the stationary regime, committor functions have been used for
finding basins of attraction of stochastic dynamics (Koltai 2011b;Koltai andVolf 2014;
Lindner and Hellmann 2019), as reaction coordinates (Lu and Vanden-Eijnden 2014),
as basis functions in the core-set approach (Schütte et al. 2011; Sarich 2011; Schütte
and Sarich 2013) and for studying modules and flows in networks (Djurdjevac et al.
2011; Cameron and Vanden-Eijnden 2014). We expect our results to enable similar
uses for the time-dependent regime.

The theoretical results from this paper are accompanied by numerical studies on
two toy examples, a network of 5 nodes with time-varying transition probabilities, and
a discrete model of the overdamped Langevin dynamics in a triple well potential with
time-dependent forcing (as in Fig. 1). In these examples, we will particularly show to
what extent time-dependent dynamics or finite-time restrictions affect the transition
statistics in contrast to those in stationary, infinite time dynamics. The TPT-related
objects derived here allow for a quantitative assessment of the dominant statistical
behavior in complicated dynamical regimes:

(i) By adding a periodic forcing to the stationary dynamics, the reaction channels are
perturbed and new transition paths, that were not possible before, can appear (see
Example 2 and 7).

(ii) By restricting the stationary dynamics with matrix P to a finite-time window (cf.
Example 3 and 8), only transitions within this window are allowed and the average
rate of transitions is much lower than in the infinite-time situation. By additionally
applying a forcing (cf. Example 4), the system is not equilibrated anymore and we
can get a higher average rate of transitions than without forcing, although we set
the time-dependent transition matrix P(n) such that its time average equals the
transition matrix P of the stationary case. A similar approach is used in rare events
simulation where the system is pushed by an optimal non-equilibrium forcing
under which the rare events become more likely (Hartmann and Schütte 2012;
Hartmann et al. 2014).

(iii) The finite-time case can also be employed for studying qualitative changes in
the transition dynamics when parameters are perturbed. In Example 9, we exem-
plarily show that by increasing the finite-time interval length N , the transition
dynamics change qualitatively, even though the dynamics are stationary. Thus,
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Fig. 2 Reactive trajectories, i.e.,
excursions of trajectories that
start in A and end in B

TPT can be used as a quantitative tool describing bifurcations in non-stationary
non-deterministic systems.

The code used for the examples is available on Github at www.github.com/LuzieH/
pytpt.

2 Preliminaries and General Setup

The objective of transition path theory (TPT) is to understand the mechanisms by
which noise-induced transitions of a Markov chain (Xn)n∈T from one subset of the
state space A ⊂ S to another subset B ⊂ S take place.2 A and B are chosen as two
non-empty, disjoint subsets of the finite state space S, such that the transition region
C := (A ∪ B)c is also non-empty. Since historically in TPT one thinks of A as the
reactant states of a system, B as the product states and the transitions from A to B
as reaction events, we call the pieces of a trajectory that connect A to B by the name
reactive trajectories. Each reactive trajectory contains the successive states inC visited
during a transition that starts in A and ends in B, see Fig. 2, and we are interested in
gathering dynamical information about the ensemble of reactive trajectories.

In this paper, we are interested not only inMarkov chains living on the infinite-time
frame T = Z but also those on finite-time intervals T = {0, 1, . . . , N − 1}, that is
where the transitions from A to B have to take place during a finite-time frame T.
Moreover, we also consider non-stationary dynamics. This either means

– that the system is in the transient phase toward equilibrium but otherwise has a
time-independent transition matrix, or

– that the dynamical rules (the transition matrices) are varying in time, as well as
– that we are dealing with time-varying sets A and B (see the comment in Sect. 4.2
for the case of periodic dynamics and Remark 5.4 for finite-time dynamics).

In this section, we will define the committor functions and show how they can
be used to derive important statistics of the ensemble of reactive trajectories, and
this entails, e.g., the frequency of transitions, the most important transition channels
and where the process on the way to B gets stuck or spends most of its time. In
doing so, we will keep everything general enough for time-dependent and finite-
time dynamics and for the moment only need to assume the Markovianity of the
chain (Xn)n∈T and that the distribution P(Xn = i) and time-dependent transition rule
P(n) = (P(Xn+1 = j |Xn = i))i, j∈S is given for all n ∈ T.

2 TPT can be generalized to consider transitions between N subsets A1, A2, . . . , AN by looking at the
transitions between A = Ai and B = ⋃N

j �=i A j for each i = 1, . . . , N [e.g., used in the core-set approach
(Schütte et al. 2011; Sarich 2011; Schütte and Sarich 2013)].
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Later, the results from this section will be applied to the special cases of (i) infinite-
time, stationary dynamics (Sect. 3), (ii) infinite-time, periodic dynamics (Sect. 4),
and (iii) finite-time, time-dependent systems (Sect. 5), where we will also prove the
existence of committors and give the linear system of equations they are solving. These
three are just some selected special cases, and other interesting cases of systems are,
e.g., stochastic regime-switching (see Remark A.1).

2.1 Committor Equations

All of the transition statistics and characteristics can be computed from the committor
probabilities; therefore, we will start by defining them. The forward committor is the
probability that the Markov chain, currently in some state i , will next3 go to set B
and not to A. The backward committor is the same for the time-reversed Markov
chain, i.e., the probability that the time-reversed process will next hit A and not B, or
equivalently, the probability that the chain last came from A and not B.

More precisely, the forward committor q+(n) = (q+
i (n))i∈S gives the probability

that the process starting in i ∈ S at time n ∈ T reaches at next within T first B and
not A. We write

q+
i (n) := P(τ+

B (n) < τ+
A (n) | Xn = i), (4)

where the first entrance time of a set S ⊂ S after or at time n ∈ T is given by

τ+
S (n) := inf{k ∈ T s.t. k ≥ n, Xk ∈ S}, inf ∅ := ∞.

The backward committor q−(n) = (q−
i (n))i∈S gives the probability that the trajectory

arriving at time n ∈ T in state i ∈ S last within T came from A not B,

q−
i (n) := P(τ−

A (n) > τ−
B (n) | Xn = i), (5)

where the last exit time of a set S before time or at time n is given by

τ−
S (n) := sup{k ∈ T s.t. k ≤ n, Xk ∈ S}, sup∅ := −∞.

Note that the first entrance and last exit times are stopping times with respect to the
forward and time-reversed process (Ribera Borrell 2019, Lemma 3.1.1). The time-
reversed process will be introduced in the following sections for infinite-time and
finite-time Markov chains.

The forward committor, as it is defined, only considers trajectory pieces arriving
at B within the time horizon T; similarly, the backward committor only considers
excursions that left A within T.

3 Here, with next we also include the current time point, i.e., that the system is already in B.
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2.2 Transition Statistics

We will now define statistical objects that characterize the ensemble of reactive tra-
jectories from subset A to B and see that they can be computed using the committor
probabilities and the Markovianity assumption.

The first two objects, the distribution of reactive trajectories μAB(n) and its nor-
malized version μ̂AB(n), tell us where the reactive trajectories are most likely to be
found, i.e., where the transitioning trajectories spend most of their time.

Definition 2.1 The distribution of reactive trajectories μAB(n) = (μAB
i (n))i∈S for

n ∈ T gives the joint probability that the Markov chain is in a state i at time n while
transitioning from A to B:

μAB
i (n) := P(Xn = i, τ−

A (n) > τ−
B (n), τ+

B (n) < τ+
A (n)).

Note that μAB
i (n) = 0 for i /∈ C , i.e., we only get information about the density of

transitions passing through C . Direct transitions from A to B are neglected, and in
general assumed not to exist.

Theorem 2.2 For a general Markov chain (Xn)n∈T with committors q+(n), q−(n),
the distribution of reactive trajectories can be expressed as

μAB
i (n) = q−

i (n)P(Xn = i) q+
i (n).

Proof We can compute

μAB
i (n) = P(τ−

A (n) > τ−
B (n), τ+

B (n) < τ+
A (n) | Xn = i)P(Xn = i)

= q−
i (n) q+

i (n)P(Xn = i)

by conditioning on {Xn = i}, and by using independence of the two events
{τ−

A (n) > τ−
B (n)}, {τ+

B (n) < τ+
A (n)} given {Xn = i}, which follows from the Markov

property.4 ��
The distribution μAB(n) is not normalized but can easily be normalized by dividing
μAB(n) by the probability to be on a transition at time n,

Z AB(n) :=
∑

j∈C
μAB

j (n) = P(τ−
A (n) > τ−

B (n), τ+
B (n) < τ+

A (n)),

to give a probability distribution on S:

Definition 2.3 Whenever P(τ−
A (n) > τ−

B (n), τ+
B (n) < τ+

A (n)) > 0 for n ∈ T, we can
define the normalized distribution of reactive trajectories at time n ∈ T by

μ̂AB
i (n) := P(Xn = i |τ−

A (n) > τ−
B (n), τ+

B (n) < τ+
A (n))

4 Ribera Borrell (2019, Prop 2.1.10) provides us with a generalization of the Markov property for Markov
chains for events like {τ−

A (n) > τ−
B (n)} resp. {τ+

B (n) < τ+
A (n)}, which belong to the σ -algebra that

contains the present and future resp. the present and past of the chain.
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giving the density of states in which trajectories transitioning from A to B spend their
time.

The next object tells us about the average number of jumps from i to j during one
time step (i.e., the probability flux), while the trajectory is on its way from A to B:

Definition 2.4 The current of reactive trajectories f AB(n) = ( f ABi j (n))i, j∈S at time
n ∈ T gives the average flux of trajectories going through i at time n ∈ T and j at
time n + 1 ∈ T consecutively while on their way from A to B:

f ABi j (n) := P(Xn = i, Xn+1 = j, τ−
A (n) > τ−

B (n), τ+
B (n + 1) < τ+

A (n + 1))

Theorem 2.5 The current of reactive trajectories for a Markov chain (Xn)n∈T with
transition probabilities P(n) and committors q+(n), q−(n), is given by

f ABi j (n) = q−
i (n)P(Xn = i) Pi j (n) q+

j (n + 1)

Proof The reactive current can be computed as

f ABi j (n) = P(Xn+1 = j, τ−
A (n) > τ−

B (n), τ+
B (n + 1) < τ+

A (n + 1)|Xn = i)

P(Xn = i)

= P(Xn+1 = j, τ+
B (n + 1) < τ+

A (n + 1)|Xn = i)

P(τ−
A (n) > τ−

B (n)|Xn = i)P(Xn = i)

= P(Xn+1 = j |Xn = i)P(τ+
B (n + 1) < τ+

A (n + 1)|Xn+1 = j, Xn = i)

q−
i (n)P(Xn = i)

= q−
i (n)P(Xn = i) Pi j (n) q+

j (n + 1),

by first conditioning on {Xn = i}, then by independence of {Xn+1 = j,
τ+
B (n + 1) < τ+

A (n + 1)} and {τ−
A (n) > τ−

B (n)} given {Xn = i}, by conditioning on
{Xn+1 = j}, and last by the Markov property. ��
Let us note that the reactive current also counts the transitions going directly from
i ∈ A to j ∈ B, these are not accounted for in the reactive distribution which only
accounts for transitions passing the region (A ∪ B)c.

In order to eliminate information about detours of reactive trajectories, we define:

Definition 2.6 The effective current of reactive trajectories f +(n) = ( f +
i j (n))i, j∈S at

time n ∈ T gives the net amount of reactive current going through i at time n ∈ T and
j at time n + 1 ∈ T consecutively,

f +
i j (n) := max{ f ABi j (n) − f ABji (n), 0}.

Ultimately, the effective current of reactive trajectories can be used to find the dominant
transition channels in state space between A and B (see, e.g., Metzner et al. 2009).

The current of reactive trajectories only goes out of A, not into A; moreover, the
current of reactive trajectories only points into B, not out of B. Therefore, A can be

123



3330 Journal of Nonlinear Science (2020) 30:3321–3366

thought of as a source of reactive trajectories, whereas B acts like their sink. This
leads us to our next characteristic of reactive trajectories: By summing the current of
reactive trajectories over A, we get the discrete rate of reactive trajectories flowing out
of A, and by summing the current over B, we obtain the rate of inflow into B:

Definition 2.7 For n, n + 1 ∈ T, the discrete rate of transitions leaving A at time n is
given by

kA→(n) := P(Xn ∈ A, τ+
B (n + 1) < τ+

A (n + 1)),

i.e., the probability of a reactive trajectory leaving A at time n. When n − 1, n ∈ T,
the discrete rate of transitions entering B at time n is given by

k→B(n) := P(Xn ∈ B, τ−
A (n − 1) > τ−

B (n − 1)),

i.e., the probability of a reactive trajectory entering B at time n.

Theorem 2.8 For a Markov chain (Xn)n∈T with current of reactive trajectories
f AB(n), we find the discrete rates to be

kA→(n) =
∑

i∈A, j∈S
f ABi j (n)

k→B(n) =
∑

i∈S, j∈B
f ABi j (n − 1).

(6)

Proof We can compute by using the law of total probability

∑

i∈A, j∈S
f ABi j (n)

=
∑

i∈A, j∈S
P(Xn = i, Xn+1 = j, τ−

A (n) > τ−
B (n), τ+

B (n + 1) < τ+
A (n + 1))

= kA→(n)
∑

i∈S, j∈B
f ABi j (n − 1)

=
∑

i∈S, j∈B
P(Xn−1 = i, Xn = j, τ−

A (n − 1) > τ−
B (n − 1), τ+

B (n) < τ+
A (n))

= k→B(n).

(7)

��

3 TPT for Stationary, Infinite-TimeMarkov Chains

TPT was originally designed for stationary, infinite-time Markov processes (Weinan
and Vanden-Eijnden 2006; Metzner et al. 2009) that are often used as models for
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molecular systems (Noé et al. 2009). Here, we will recall that theory by using the
results from the previous section and equip it with some new results (e.g., Lemma 3.5)
that will be needed later.

3.1 Setting

We begin with describing the processes of interest in this section.

Assumption 3.1 We consider a Markov chain (Xn)n∈Z taking values in a discrete and
finite state space S, and the time-discrete jumps between states i ∈ S and j ∈ S occur
with probability

Pi j := P(Xn+1 = j |Xn = i)

stored in the row-stochastic transition matrix P = (Pi j )i, j∈S. We assume that the
process is irreducible, and ergodic with respect to the unique, strictly positive invariant
distribution π = (πi )i∈S (also called stationary distribution interchangeably) solving
π� = π�P .

The time-reversed process (X−
n )n∈Z, X−

n := X−n traverses the chain backwards
in time. It is also a Markov chain (Ribera Borrell 2019, Thm 2.1.19) and stationary
with respect to the same invariant distribution. The transition probabilities of the time-
reversed process P− = (P−

i j )i, j∈S with entries

P−
i j := P(X−

−n+1 = j |X−−n = i) = P(Xn−1 = j |Xn = i)

can be found from expressing the flux in two ways,

P(Xn = i, Xn+1 = j) = Pi jπi = P−
j iπ j .

3.2 Committor Probabilities

Due to stationarity of the chain (Assumption 3.1), the law of the chain is the same for
all times, and we simply have that the committors (4) and (5) are time-independent
q+
i (n) = q+

i , similarly q−
i (n) = q−

i for all n.
The forward and backward committors can be found by solving a linear matrix

equation of size |C |with appropriate boundary conditions (Norris 1998, Chapter 1.3).

Theorem 3.2 The forward committor for aMarkov chain according to Assumption 3.1
with transition probabilities P = (Pi j )i, j∈S satisfies the following linear system

⎧
⎪⎨

⎪⎩

q+
i = ∑

j∈S
Pi j q

+
j i ∈ C

q+
i = 0 i ∈ A
q+
i = 1 i ∈ B.

(8)
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Analogously for the backward committor, we have to solve the following linear system

⎧
⎪⎨

⎪⎩

q−
i = ∑

j∈S
P−
i j q

−
j i ∈ C

q−
i = 0 i ∈ B
q−
i = 1 i ∈ A.

(9)

Proof From the definition of the committors (4), it immediately follows that we have
q+
i = 0 for i ∈ A since we always have τ+

A (n) = n, while τ+
B (n) > n. Analogously,

we have q+
i = 1 for i ∈ B since in that case, τ+

A (n) > n and τ+
B (n) = n. For the

committor at node i in the transition region C , we can sum the forward committor at
all the other states j weighted with the transition probability to transition from i to j .
This follows from

q+
i = P(τ+

B (n) < τ+
A (n)|Xn = i) =

∑

j∈S
P(Xn+1 = j, τ+

B (n) < τ+
A (n)|Xn = i)

=
∑

j∈S
P(Xn+1 = j |Xn = i)P(τ+

B (n) < τ+
A (n)|Xn+1 = j, Xn = i)

=
∑

j∈S
P(Xn+1 = j |Xn = i)P(τ+

B (n + 1) < τ+
A (n + 1)|Xn+1 = j, Xn = i)

=
∑

j∈S
Pi jq

+
j

first using the law of total probability, then conditioning on {Xn+1 = j}, using that at
time n the chain is in i ∈ C and thus τ+

A (n), τ+
B (n) ≥ n+1, and last using the Markov

property.
For the backward committor equations, we can proceed in a similar way, by addi-

tionally using the time-reversed process. ��

Remark 3.3 If theMarkov chain in addition is reversible, i.e., if Pi jπi = Pjiπ j (equiv-
alently, P−

i j = Pi j ) holds, then it follows from Theorem 3.2 that the forward and

backward committors are related by q+
i = 1 − q−

i .

The following lemma provides us with the necessary condition such that existence and
uniqueness of the committors is guaranteed. For a proof, see Ribera Borrell (2019,
Lemma 3.2.4) or Norris (1998, Chapter 4.2).

Lemma 3.4 If P is irreducible, then the two problems (8) and (9) each have a unique
solution.

There is a second characterization of the committors in the transition region using
path probabilities, as summarized in the following lemma. The proof can be found in
Appendix A.2.1.
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Lemma 3.5 For any i ∈ C, the forward committor can also be specified as the prob-
ability of all possible paths starting from node i that reach the set B before A

q+
i =

∑

τ∈Z+

∑

i1...iτ−1∈C
iτ ∈B

Pii1 · · · Piτ−1iτ .
(10)

Similarly for any i ∈ C, the backward committor can also be understood as the sum
of path probabilities of all possible paths arriving at node i that last came from A and
not B

q−
i =

∑

τ∈Z−

∑

iτ ∈A
iτ+1...i−1∈C

P−
iτ+1iτ

· · · P−
i i−1

.
(11)

3.3 Transition Statistics

The committor, the distribution, and the transition probabilities are time-independent;
thus, the statistics from Sect. 2.2 are time-independent. We write the distribution of
reactive trajectories (Theorem 2.2) as μAB = (μAB

i )i∈S, where

μAB
i = q−

i q
+
i πi ,

the normalized distribution as μ̂AB = (μ̂AB
i )i∈S. The current of reactive trajectories

(Theorem 2.5) f AB = ( f ABi j )i, j∈S is given by

f ABi j = q−
i πi Pi j q

+
j ,

and the effective reactive current is denoted f + = ( f +
i j )i, j∈S.

Theorem 3.6 For a stationary Markov chain (Xn)n∈Z, the reactive current out of a
node i ∈ C equals the current flowing into the node i ∈ C, i.e.,

∑

j∈S
f ABi j =

∑

j∈S
f ABji . (12)

Further, the the reactive current flowing out of A into S (equivalently into C ∪ B)
equals the flow of reactive trajectories from S (equivalently from C ∪ A) into B

∑

i∈A, j∈S
f ABi j =

∑

i∈S, j∈B
f ABi j . (13)

For the proof, see Appendix A.2.2.

Remark 3.7 Due to these conservation laws, there is a close relation of the committors
and the effective current (when the chain is reversible) to the voltage and the electric
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current in an electric resistor network (Doyle 1984;Norris 1998)with a voltage applied
between A and B, seeMetzner (2008), Metzner et al. (2009) for work in this direction.
Also, in Metzner (2008), Metzner et al. (2009), a decomposition algorithm of the
effective current into the paths from A to B carrying a substantial portion of the
transition rate is proposed, yielding the dominant transition channels between A and
B. The effective current of reactive trajectories is loop-erased; therefore, in Banisch
et al. (2015) a decomposition of the current of reactive trajectories into cyclic structures
and non-cyclic parts is suggested.

Further, since
∑

i∈A, j∈S f ABi j = ∑
i∈S, j∈B f ABi j by Theorem 3.6, the discrete

rate of leaving A equals the discrete rate of entering into B; thus, we denote
kAB := kA→ = k→B . This tells us the probability of a realized transition per time step,
i.e., either the probability to leave A and be on the way to B next, or the probability
to reach B when coming from A. That kAB indeed has the physical interpretation of
a rate becomes clear from the characterization in Theorem 3.8.

3.4 Interpretation of the Statistics as Time Averages Along Trajectories

The statistics from the previous section give us dynamical information about the
ensemble of reactive trajectories. Due to the ergodicity, the Markov chain will visit all
states infinitely many times and the ensemble space average of a quantity equals the
time average this quantity along a single infinitely long trajectory (Birkhoff’s ergodic
theorem). Therefore, the reactive trajectory statistics from the previous section can also
be found by considering the reactive pieces along a single infinitely long trajectory
and by averaging over them.

Theorem 3.8 For a Markov chain (Xn)n∈Z satisfying Assumption 3.1, we have the
following P−almost sure convergence results:

μAB
i = lim

N→∞
1

2N + 1

N∑

n=−N

1{i}(Xn)1A

(
Xτ−

A∪B (n)

)
1B

(
Xτ+

A∪B (n)

)

f ABi j = lim
N→∞

1

2N + 1

N∑

n=−N

1{i}(Xn)1A

(
Xτ−

A∪B (n)

)
1{ j}(Xn+1)1B

(
Xτ+

A∪B (n+1)

)

kAB = lim
N→∞

1

2N + 1

N∑

n=−N

1A(Xn)1B

(
Xτ+

A∪B (n+1)

)

= lim
N→∞

1

2N + 1

N∑

n=−N

1A

(
Xτ−

A∪B (n−1)

)
1B(Xn)

(14)

where i, j ∈ S and 1A(x) is the indicator function on the set A.

The proof of Theorem 3.8 can be found in Ribera Borrell (2019, Thm 3.3.2, Thm
3.3.7, Thm 3.3.11) and relies on Birkhoff’s ergodic theorem (Walters 2000) for the
canonical representation of the process as a Markov shift.
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The theorem not only offers a data-driven approach to approximate the transition
statistics by averaging along a given sufficiently long trajectory sample but also gives
interpretability to the statistics. While μAB as the (not normalized) trajectory-wise
distribution of reactive trajectories and f AB as the trajectory-wise flux of reactive
trajectories are still straightforward to understand, we can also give meaning to the
rate kAB and to Z AB = ∑

i∈C μAB
i . We can think of kAB as the total number of

reactive transitions taking place within the time interval {−N , . . . , N } divided by the
number of time steps 2N + 1 in the limit of N → ∞. Similarly, we can give meaning
to Z AB as the total time spent transitioning during {−N , . . . , N } divided by 2N + 1
in the limit of N → ∞. Last, we note that the ratio between Z AB and kAB provides
us with a further characteristic transition quantity (Vanden-Eijnden 2006),

t AB := Z AB

kAB
= lim

N→∞
total time spent transitioning during {−N , . . . , N }

#{reactive transitions during {−N , . . . , N }} ,

telling us the total time spent transitioning divided by the total number of transitions,
i.e., the expected length of a transition from A to B.

3.5 Numerical Example 1: Infinite-Time, Stationary Dynamics on a 5-State
Network

We consider a Markov chain on a network of five states S = {0, 1, 2, 3, 4} of which
0, 2, 4 have a high probability to remain in the same state. The transition matrix is
given by the row-stochastic matrix P , see Fig. 3. We are interested in transitions from
the subset A = {0} to the subset B = {4}. What is the most likely route that the
transitions take?

The numerically computed committors and transition statistics are shown in Fig. 3,
and the discrete rate of transitions is kAB = 0.018, i.e., on average every 56 time steps
a transition from A to B is completed. We see that the effective current is the strongest
along the path A → 1 → B, i.e., most transitions effectively happen via this path, but
a share of 33.3% of transitions happens via the route from A → 3 → B. Also, we
can note that the density of reactive trajectories has a very high value in the state 2,
indicating that many reactive trajectories pass this state or stay there for a long time.
Thus, reactive trajectories on the effective path A → 1 → B will likely do a detour to
2, which is not visible from the effective current since it does not tell us about detours.

4 TPT for Periodically Driven, Infinite-TimeMarkov Chains

Many real-world systems showcase periodicity, for example, any system subject to
seasonal driving, or physical systems with periodic external stimuli.

For studying transitions in these systems, we extend TPT to Markov chains with
periodically varying transition probabilities that are equilibrated to the forcing and
cycle through the same distributions each period. If the period is only one time step
long, this case reduces to the previous case of stationary, infinite-time dynamics.
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(a) (b) (c) (d) (e)

Fig. 3 The dynamics of the infinite-time system in Example 1 with a transition matrix P and statistics of
the transitions from A to B are shown. The node color of b q+, c q−, and d μ̂AB indicates the values of
the respective statistics, ranging from yellow (low values) via orange to purple (high value). e The strength
of the effective current from one state i to state j is shown by the thickness and grayscale of the arrow
pointing from i to j . The node color of A and B indicates the sum of current flowing out, respectively, into
the node; here, this is just kAB (Color figure online)

We start by laying out the exact setting of the process that we consider, before turn-
ing to the computation of committors and transition statistics for periodically forced
dynamics. As we will see, by writing the committor equations on a time-augmented
state space, we can also find committors for systemswith stochastic switching between
different dynamical regimes.

4.1 Setting

Assumption 4.1 Consider a Markov chain (Xn)n∈Z on a finite and discrete state space
S with transition probabilities Pi j (n) = P(Xn+1 = j | Xn = i) that are periodically
varying in time with period length M ∈ N, i.e., the transition matrices fulfill

P(n) = P(n + M) ∀n ∈ Z.

Therefore, the transition matrices at the times within one periodM := {0, . . . , M−1}
are sufficient to describe all the dynamics and we denote them by Pm := P(n) for
time n ∈ Z congruent to m ∈ M modulo M .

The product of transition matrices over one M−period starting at a time equivalent
to m ∈ M (modulo M) is denoted by P̄m := Pm Pm+1 · · · Pm+M−1, which is again a
transition matrix pushing the Markov chain M time instances in time forward starting
from time≡ m (mod M), see Fig. 4. The chain described by P̄m is not time-dependent
anymore, and it resolves the state of the original system only every M time instance
with a time-independent transition matrix P̄m .

Proposition 4.2 If P̄0 is irreducible and assuming the setting 4.1 as described above,
then for all m ∈ M, there exists an invariant distribution πm such that π�

m = π�
m P̄m

of the transition matrix P̄m. Further, π0 is unique and π0,i > 0 for all i ∈ S. If we in
addition require π�

m+1 = π�
m Pm for all m, then the entire family (πm)m=0,...,M−1 is

unique.5

Proof Since P̄0 is irreducible and the state space is finite, theMarkov chain induced by
P̄0 has a unique and positive invariant density π0 = (π0,i )i∈S such that π�

0 P̄0 = π�
0 .

5 Sometimes such a family of invariant densities is called equivariant.
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Fig. 4 The evolution of densities for periodic dynamics assuming M−stationarity. The density evolution
described by Pm , m ∈ M varies periodically with time n. Whereas the dynamics described by P̄m for a
fixed m are time-independent, they resolve the system only every M time instances at times n equivalent to
m modulo M

It follows that also P̄1 has an invariant density, namely π�
1 := π�

0 P0, since it fulfills

π�
1 P̄1 = π�

0 P0 P̄1 = π�
0 P0P1 · · · PM−1P0 = π�

0 P̄0P0 = π�
0 P0 = π�

1 .

In the same way, P̄m,m = 2, . . . , M − 1, have an invariant distribution
π�
m := π�

m−1Pm−1, such that π�
m P̄m = π�

m . ��
Thus, the densities π1, . . . πM−1 are not necessarily unique, unless we require irre-

ducibility. Doing so, there is a unique periodic family of distributions that the chain
can admit, and we call such a chain M−stationary; see Fig. 4. Having the long-time
behavior of chains in mind in this section, we will assume this property, relying on
ergodicity.

Assumption 4.3 We assume that P̄0 is irreducible and that the chain is M-stationary,
i.e., P(Xn = i) = πm,i whenever n is equivalent to m modulo M .

Next, we introduce the time-reversed chain (X−
n )n∈Z with X−

n = X−n . Due
to M−stationarity, the transition probabilities of the time-reversed chain are also
M−periodic, and it is enough to give the transition probabilities backward in time
P−
m for each time point during the period m ∈ M

P−
m,i j : = P(X−

M−m+1 = j |X−
M−m = i) = P(Xm−1 = j |Xm = i)

= P(Xm = i |Xm−1 = j)
P(Xm−1 = j)

P(Xm = i)
= Pm−1, j i

πm−1, j

πm,i

whenever πm,i > 0, else for πm,i = 0 we set P−
m,i j := 0.

4.2 Committor Probabilities

We will first look at the forward and backward committors and the system of equa-
tions that can be solved to acquire them. The forward q+(n), respectively, backward
committor q−(n) is defined as before in (4), respectively, (5), but now since the law
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of the Markov chain is the same every M time instances, the committors also vary
periodically and are identical every M time steps, and we therefore denote

q+
m := q+(n)

q−
m := q−(n)

(15)

whenever n is equivalent to m ∈ M.
Again, we consider non-empty and disjoint subsets A, B of the state space. It

is straightforward to extend the theory to periodically varying sets A = (Am)m∈M,
B = (Bm)m∈M defined on S

M .

Theorem 4.4 Suppose a Markov chain meeting Assumptions 4.1 and 4.3. Then, the
M−periodic forward committor q+

m = (q+
m,i )i∈S fulfills the following iterative system

with periodic conditions q+
M = q+

0

⎧
⎪⎪⎨

⎪⎪⎩

q+
m,i = ∑

j∈S
Pm,i j q

+
m+1, j i ∈ C

q+
m,i = 0 i ∈ A

q+
m,i = 1 i ∈ B,

(16)

whereas the M−periodic backward committor q−
m = (q−

m,i )i∈S satisfies

⎧
⎪⎪⎨

⎪⎪⎩

q−
m,i = ∑

j∈S
P−
m,i j q

−
m−1, j i ∈ C

q−
m,i = 0 i ∈ B

q−
m,i = 1 i ∈ A

(17)

where q−
M = q−

0 .

The proof follows the lines of the proof above for the stationary, infinite-time case and
can be found in Appendix A.2.3.

Before proving that the two systems are uniquely solvable, we characterize the
forward and backward committors in terms of the path probabilities over one period
M:

Lemma 4.5 For any time n = m modulo M and i ∈ C, the committor functions (15)
satisfy the following equalities

q+
m,i =

∑

i1...iM∈C
Pm,i i1 Pm+1,i1i2 · · · Pm+M−1,iM−1iM q

+
m,iM

+
M∑

τ=1

∑

i1...iτ−1∈C
iτ ∈B

Pm,i i1 · · · Pm+τ−1,iτ−1iτ

(18)

123



Journal of Nonlinear Science (2020) 30:3321–3366 3339

q−
m,i =

∑

i1...iM∈C
P−
m,i i1

P−
m−1,i1i2

· · · P−
m−M+1,iM−1iM

q−
m,iM

+
M∑

τ=1

∑

i1...iτ−1∈C
iτ ∈A

P−
m,i i1

· · · P−
m−τ+1,iτ−1iτ

(19)

Proof First, it follows from (16) for i ∈ C that

q+
m,i =

∑

i1∈C
Pm,i i1q

+
m+1,i1

+
∑

i1∈B
Pm,i i1 (20)

since q+
m+1,i1

= 1 if i1 ∈ B, q+
m+1,i1

= 0 if i1 ∈ A. By inserting the committor

equations at the following times iteratively and by using that q+
0 = q+

M , we get (18).
We can proceed analogously for the backward committor, starting from (17) and re-
inserting committor equations. ��
Equation (18) withm = 0 only contains one unknown and can be solved, e.g., numer-
ically for all i ∈ C , whereas for A, respectively, B, the committor is simply 0,
respectively, 1. The committor for the remaining times m = 1, 2, . . . can then be
computed thereof by using (16), analogously for (19).

The time resolution of the Markov chain during the period is important for the
committors since we can resolve hitting events of B within the period. The committors
onewould compute for amore coarsely resolved chainwithout state informationduring
the period, i.e., for the chain described by P̄0 (time-homogeneous, but mapping one
period in time forward), will not notice that the chain has hit B at times other than
m = 0. To see that, compare Lemma 4.5 with Lemma 3.5 using P̄0.

Lemma 4.6 By the irreducibility of P̄0, the solutions to (16) and (17) exist and are
unique.

The proof can be found in Appendix A.2.4.

Remark 4.7 The committor equations can also be written on a time-augmented state
space using a period-augmented transition matrix that pushes the dynamics determin-
istically forward in time

PAug =

⎛

⎜
⎜
⎜
⎝

0 P0 0
. . .

. . .

0 PM−2
PM−1 0

⎞

⎟
⎟
⎟
⎠

.

Extending this approach, one can also consider committor equations for systems that
switch stochastically with probabilities P̂ ∈ R

M×M between M different regimes,
and each regime is described by a transition matrix Pm . This is essentially the Markov
chain analogue of a random dynamical system (Arnold 1995). The regime-augmented
transition matrix is given by
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Pswitch
Aug =

⎛

⎜
⎝

P̂11P1 . . . P̂1M PM
...

. . .
...

P̂M1P1 . . . P̂MM PM

⎞

⎟
⎠ .

We refer to Appendix A.1 for more details on both ansatzes and the computation
of committor probabilities on the augmented space. The augmented approach also
offers a numerical way of solving the committor equations with periodic boundary
conditions.

4.3 Transition Statistics

We have seen that the forward and backward committors in the case of periodically
drivendynamics are alsoM−periodic and canbe computed from the iterative equations
(16), (17) with periodic conditions in time. Since committors, densities, and transition
matrices are M−periodic, all statistics computed thereof are so too by the theory in
Sect. 2.2, andwe equip themwith a subscriptm, e.g., μ̂AB(n) = μ̂AB

m , f AB(n) = f ABm ,
whenever n ≡ m modulo M .

Compared to the previous case of stationary, infinite-time, the discrete rate
of reactive trajectories leaving A at time m, kA→

m = ∑
i∈A, j∈S f ABi j (m), does not

anymore equal the discrete rate of reactive trajectories arriving in B at time m,
k→B
m = ∑

i∈S, j∈B f ABi j (m − 1).
The next theorem provides us with the reactive current conservation laws in the

case of periodic dynamics and will allow us to find the relation between kA→
m and

k→B
m .

Theorem 4.8 Consider a Markov chain satisfying Assumptions 4.1 and 4.3. Then, for
each node i ∈ C and time m ∈ M we have the following current conservation law

∑

j∈S
f ABm,i j =

∑

j∈S
f ABm−1, j i , (21)

i.e., all the reactive trajectories that flow out of i at time (congruent to) m have flown
into i at time equivalent to m − 1.

Further, over one period the amount of reactive flux leaving A is the same as the
amount of flux entering B, i.e.,

∑

m∈M

∑

i∈A
j∈S

f ABm,i j =
∑

m∈M

∑

i∈S
j∈B

f ABm,i j . (22)

The proof can be found in Appendix A.2.5 and follows from straightforward compu-
tations using the committor equations to rewrite the reactive current.
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As a result of (22), the discrete out-rate averaged over one period equals the average
discrete in-rate, which we define to be k̄ ABM , i.e.,

k̄ ABM := 1

M

∑

m∈M
kA→
m = 1

M

∑

m∈M
k→B
m .

This period-averaged discrete rate tells us the average probability per time step of a
reactive trajectory to depart in A or in other words, the expected number of reactive
trajectories leaving A per time step.

4.4 Numerical Example 2: Periodically Varying Dynamics on a 5-State Network

We consider the same 5−state network as before in Example 1, but this time the
Markov chain is in equilibrium to the periodically varying transition probabilities

Pm = T + cos

(
2mπ

M

)

L, m ∈ {0, . . . , M − 1},

with period length M = 6. The transition matrices are chosen such that for time
m = 0, the dynamics are the same as in the stationary Example 1, P0 = T + L = P ,
whereas at time m = 3, the dynamics are reversed P3 = T − L . Matrix T is a fixed
row-stochastic matrix which has transition probabilities that are symmetric along the
axis through A and B and L is a 0-rowsum matrix that is not symmetric along the axis
through A and B. The probabilities of the transition matrices are shown in Fig. 5.

With the numerically computed transition statistics as shown in Fig. 6, we try to
answer whether the added perturbation results in alternative effective paths compared
to Example 1. The effective current indicates that the most likely effective transition
path from A to B either goes via A → 1 → B (with a likely detour to 2) during the
first half of the period, or via A → 3 → B (with a detour to 2) toward the second
half of the period. But interestingly, we have additional transition paths that go via
A → 1 → 2 → 3 → B and A → 3 → 2 → 1 → B. Neither in the stationary
system described by P0 = T + L nor by P3 = T − L , this path would be possible.
Additionally, the period-averaged rate k̄ AB6 = 0.034 is higher than the rate in the
stationary case (Example 1).

5 TPT for Markov Chains on a Finite-Time Interval

We now develop TPT for Markov chains with the transitions of interest taking place
during a finite-time interval. The transition rules can be time-dependent, and the
dynamics can be non-stationary, i.e., out of equilibrium.

The resulting committor equations (Sect. 5.2) and statistics (Sect. 5.3) in case of
finite-time dynamics are similar as in the periodic case, yet there are some distinctions.
The committor equations are now equipped with final, respectively, initial conditions,
and the statistics show some boundary effects at the time interval limits.
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Fig. 5 The dynamics of the periodic system of Example 2 are given by the transition matrix Pm = T +
cos

(mπ
3

)
L for the timesm = n (mod 6); shown here are the transition matrices a T + L , b T and c T − L

(a)

(b)

Fig. 6 We show statistics of Example 2, namely a the normalized distribution which is shown by the color
of the nodes, ranging from yellow (low values) via orange to purple (high value), as well as b the effective
current from one state i to state j that is indicated by the thickness and grayscale of the arrow pointing from
i to j . The node color of the effective current plot indicates the outflow of A and the inflow into B of current
at the corresponding time point m, which can be related to the k A→

m and k→B
m+1 (Color figure online)

In Sect. 5.4, we also provide a consistency result between the stationary, infinite-
time case and the finite-time case for a stationary Markov chain, by considering the
limit of the time interval going to infinity.

5.1 Setting

Let us start by describing the systems of interest in this section.

Assumption 5.1 We consider a Markov chain on a finite-time interval (Xn)0≤n≤N−1,
N ∈ N, taking values in a discrete and finite space S. The probability of a jump from
the state i ∈ S to the state j ∈ S at time n ∈ {0, . . . , N−2} is given by the (i, j)−entry
of the row-stochastic transition matrix P(n) = (Pi j (n))i, j∈S:

Pi j (n) := P(Xn+1 = j | Xn = i).
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Setting the initial density λ(0) = (λi (0))i∈S, the densities at later times n ∈
{1, . . . , N − 1} are given by λ(n + 1)� = λ(n)�P(n).

By these assumptions, the chain can have time-inhomogeneous transition probabil-
ities, or even if P(n) = P for all n, the densities λ(n) can be changing in time. Also,
we are not requiring the chain to be irreducible anymore.

The time-reversed process (X−
n )0≤n≤N−1 defined by X−

n := XN−1−n is also a
Markov chain (Ribera Borrell 2019, Thm 2.1.18). Its transition probabilities are given
for any n ∈ {1, . . . , N − 1} by

P−
i j (n) := P(X−

N−1−n+1 = j | X−
N−1−n = i)

= P(Xn−1 = j | Xn = i) = λ j (n − 1)

λi (n)
Pji (n − 1)

(23)

whenever λn(i) > 0. From the backward transition probabilities (23), we note that
even the time-reversed process of a finite-time, time-homogeneousMarkov chain (i.e.,
P(n) = P for all n) is in general a finite-time, time-inhomogeneous Markov chain,
unless also the distribution λ(n) is time-independent.

5.2 Committor Probabilities

The forward (4) and backward committors (5) keep their dependence on the time of
the chain n ∈ {0, . . . , N − 1}. The following theorem provides us with two iterative
equations for the forward and backward committors. Because one can solve (24)
and (25) iteratively, the solutions exist and are unique.

Theorem 5.2 The forward committor for a finite-time Markov chain of form 5.1 sat-
isfies the following iterative system of equations for n ∈ {0, . . . , N − 2}:

⎧
⎪⎨

⎪⎩

q+
i (n) = ∑

j∈S
Pi j (n) q+

j (n + 1) i ∈ C

q+
i (n) = 0 i ∈ A
q+
i (n) = 1 i ∈ B

(24)

with final condition q+
i (N − 1) = 1B(i). Analogously, the backward committor for a

finite-time Markov chain satisfies for n ∈ {1, . . . , N − 1}
⎧
⎪⎨

⎪⎩

q−
i (n) = ∑

j∈S
P−
i j (n) q−

j (n − 1) i ∈ C

q−
i (n) = 1 i ∈ A
q−
i (n) = 0 i ∈ B

(25)

with initial condition q−
i (0) = 1A(i).

The proof uses some of the arguments of the proofs above for the stationary, infinite-
time and periodic infinite-time cases and can be found in Appendix A.2.6.
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The following theorem provides us with an analogue result to Theorem 3.5 for the
forward and the backward committors of a finite-time Markov chain written in terms
of path probabilities of the paths that start in A and end in B within the restricted time
frame T.

Lemma 5.3 The forward committor at time n ∈ {0, . . . , N − 2} and the backward
committor at time n ∈ {1, . . . , N − 1}, respectively, satisfy for i ∈ C the following
equalities:

q+
i (n) =

N−1∑

τ=n+1

∑

iτ ∈B
in+1,...,iτ−1∈C

Piin+1(n) · · · Piτ−1iτ (τ − 1) (26)

q−
i (n) =

n−1∑

τ=0

∑

iτ ∈A
iτ+1,...,in−1∈C

P−
i in−1

(n) · · · P−
iτ+1iτ

(τ + 1). (27)

The proof follows from rewriting q+
i (n) for any time n ∈ {0, . . . , N − 2} into a

decomposition of the probabilities of all possible paths that reach B within the time
interval {n+1, . . . , N −1} and rewriting q−

i (n) for any time n ∈ {1, . . . , N − 1} into
a decomposition of the probabilities of all possible paths that came from A within
{1, . . . , n − 1}.
Remark 5.4 Similar as in the periodic case, it is possible to extend the approach to
time-dependent sets (i.e., space-time sets) A(n) and B(n). For instance, in order to
study transitions that leave a set at a certain time (e.g., at time n = 0) and arrive at a
certain time (e.g., at n = N ) we can choose A(n) = 1{0}(n)A and B(n) = 1{N }(n)B.

5.3 Transition Statistics and Their Interpretation

Wehave seen that the forward and backward committors for a finite-timeMarkov chain
can be computed from the iterative equations (24) and (25) with final, respectively,
initial conditions. Based on these, we will next introduce the corresponding transition
statistics.

The distribution of reactive trajectories (Definition 2.1) is defined for any time
n ∈ {0, . . . , N − 1}, and by Theorem 2.2, it is given by

μAB
i (n) = q−

i (n) λn(i) q
+
i (n).

Observe that μAB
i (0) = μAB

i (N − 1) = 0 because there are no reactive trajectories at
these times. Thus, the distribution of reactive trajectories cannot be normalized at times
0 and N − 1. As a consequence, the normalized distribution of reactive trajectories
μ̂AB(n) is just defined for times n ∈ {1, . . . , N − 2}.

The current of reactive trajectories is defined for any time n ∈ {0, . . . , N − 2}, and
it is given by (Theorem 2.5)

f ABi j (n) = q−
i (n) λn(i) Pi j (n) q+

j (n + 1).
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Similarly, the effective current of reactive trajectories

f +
i j (n) := max{ f ABi j (n) − f ABji (n), 0}

is defined only for times n ∈ {0, . . . , N − 2}.
Also in this case, the current satisfies certain conservation principles:

Theorem 5.5 For a finite-timeMarkov chain (Xn)0≤n≤N−1 satisfying Assumption 5.1,
the reactive current flowing out of the node i ∈ C at time n equals the current flowing
into a node i ∈ C at time n − 1, i.e.,

∑

j∈S
f ABi j (n) =

∑

j∈S
f ABji (n − 1) (28)

for n ∈ {1, . . . , N − 2}. Further, the reactive current flowing out of A into S over the
whole time period {0, . . . , N − 2} equals the flow of reactive trajectories from S into
B over the period

N−2∑

n=0

∑

i∈A, j∈S
f ABi j (n) =

N−2∑

n=0

∑

i∈S, j∈B
f ABi j (n). (29)

The proof can be found in Appendix A.2.7.
The discrete rate of transitions leaving A is defined for times n ∈ {0, . . . , N − 2}

kA→(n) =
∑

i∈A, j∈S
f ABi j (n),

whereas the discrete rate of transitions entering B is defined for times n ∈ {1, . . . ,
N − 1}

k→B(n) =
∑

i∈S, j∈B
f ABi j (n − 1).

By plugging the definitions of the rates into result (29) of Theorem 5.5 and by
re-indexing the times, we note that the discrete departure rate averaged over the
times n ∈ {0, . . . , N − 2} equals the time-averaged discrete arrival rate over the times
n ∈ {1, . . . , N − 1}, which we denote by k̄ ABN , i.e.,

k̄ ABN := 1

N

N−2∑

n=0

kA→(n) = 1

N

N−1∑

n=1

k→B(n).

In the infinite-time, stationary case, Theorem 3.8 tells us that kAB equals the time
average of the number of reactive pieces departing per time step along a single infinitely
long trajectory. Here, we cannot apply the ergodic theorem to turn k̄ ABN into an average
along a single trajectory. Instead, we can write the time-averaged rate in terms of an
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ensemble of trajectories to get a better understanding. For this, we take K ∈ N i.i.d.
realizations of the finite-time chain, i.e., each sample (X̂ i

n)n∈{0,...,N−1} is distributed
according to the law of the finite-time dynamics with X̂ i

0 ∼ λ(0). Then, we have by
the law of large numbers:

k̄ ABN = 1

N

N−2∑

n=0

P(Xn ∈ A, τ+
B (n + 1) < τ+

A (n + 1))

= 1

N

N−2∑

n=0

E

[
1A(Xn)1B

(
Xτ+

A∪B (n+1)

)]

= lim
K→∞

1

N

N−2∑

n=0

1

K

K∑

i=1

1A(X̂ i
n)1B

(
X̂ i

τ+
A∪B (n+1)

)
.

(30)

Further, we can rewrite the second line of (30) as

k̄ ABN = 1

N

N−2∑

n=0

E

[
1A(Xn)1B

(
Xτ+

A∪B (n+1)

)]

= 1

N
E

[
N−2∑

n=0

1A(Xn)1B

(
Xτ+

A∪B (n+1)

)
] (31)

and thus giving the average rate k̄ ABN the interpretation of the total expected amount
of reactive trajectories within {0, . . . , N − 1} divided by the number of time steps.
Analogously, we can apply the same argument for the time-averaged probability of
being on a transition

Z̄ AB
N := 1

N

N−1∑

n=0

Z AB(n) = 1

N
E

[
N−1∑

n=0

1A

(
Xτ−

A∪B (n)

)
1B

(
Xτ+

A∪B (n)

)
]

,

which can be understood as the expected number of time steps the Markov chain is
on a transition during {0, . . . , N − 1} divided by N . Last, we define the ratio

t̄ ABN := Z̄ AB
N

k̄ ABN

and observe that it provides us with the average expected duration of a reactive trajec-
tory over n ∈ {0, . . . , N − 1}.
Remark 5.6 In von Kleist et al. (2018), transitions from A to B are studied in non-
ergodic and non-stationary processes. But the focus there is put on the first pieces of
the trajectories starting in Bc which arrive in B after having been to A (called the
first passage paths), whereas we consider the ensemble of all the transitions from A
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to B within the time interval T. Further, the first passage paths are divided into non-
reactive and reactive segments and statistics for both, the reactive and the non-reactive
ensemble, are computed. Last, their approach does not have any restrictions on the
length of the first passage path and therefore is not straightforwardly extendable to
finite-time processes.

5.4 Convergence Results of TPT Objects from Finite-Time Systems to Infinite-Time

The aim of this section is to show the consistency of the committors and TPT objects
between the finite-time case and infinite-time case. We will show that when assuming
a time-homogeneous chain on a finite-time interval that is stationary, the TPT objects
converge to the infinite-time, stationary case when letting the time interval go to
infinity.

To this end, let us consider the Markov chain (Xn)−N≤n≤N on the time
interval {−N , . . . , N } with a time-homogeneous and irreducible transition matrix
P = (Pi j )i, j∈S. When choosing the unique, strictly positive invariant density
π = (πi )i∈S of P as an initial density, the density for all n ∈ {−N , . . . , N } is given
by

P(Xn = i) = πi . (32)

The time-reversed process (X−
n )−N≤n≤N is also time-homogeneous and stationary,

since its transition probabilities are given by

P−
i j = π j

πi
Pji . (33)

The forward committor and the backward committor for a finite-time Markov chain
on the time interval {−N , . . . , N } satisfy (24) and (25) with a slight adjustment of the
time interval.

The next theorem provides us the desired result:

Theorem 5.7 The committors and transition statistics defined for an irreducible
Markov chain in stationarity on a finite-time interval correspond in the limit that the
interval {−N , . . . , N } tends to Z to the objects defined for a stationary, infinite-time
Markov chain. For any i, j ∈ S, it holds that

lim
n∈{−N ,...,N−1}

N→∞
q+
i (n) = q+

i ,

lim
n∈{−N+1,...,N }

N→∞
q−
i (n) = q−

i ,

lim
n∈{−N+1,...,N−1}

N→∞
μAB
i (n) = μAB

i ,

lim
n∈{−N+1,...,N−2}

N→∞
f ABi j (n) = f ABi j ,
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lim
n∈{−N+1,...,N−2}

N→∞
kA→(n) = kA→,

lim
n∈{−N+2,...,N−1}

N→∞
k→B(n) = k→B .

Proof First, we see that the forward committor at time n ∈ {−N , . . . , N − 1} and
the backward committor at time n ∈ {−N + 1, . . . , N } for finite-time Markov chains
correspond in the limit that N → ∞ to the forward and the backward committors
defined for stationary, infinite-time Markov chains. For any n ∈ {−N , . . . , N − 1},
we can see that

lim
n∈{−N ,...,N−1}

N→∞
q+
i (n)

(1)=
∑

τ∈Z+

∑

i1,...,iτ−1∈C
iτ ∈B

Pii1 . . . Piτ−1iτ
(2)= q+

i ,
(34)

where (1) follows from applying first Lemma 5.3 and then re-indexing the coefficients
of the transition matrix P , and (2) follows directly from Lemma 3.5. Analogously, we
obtain for any n ∈ {−N + 1, . . . , N } that

lim
n∈{−N+1,...,N }

N→∞
q−
i (n) =

∑

τ∈Z−

∑

iτ ∈A
iτ+1,...,i−1∈C

P−
iτ+1iτ

. . . P−
i i−1

= q−
i .

(35)

Hence, by putting together (34), (35) and (32) we show that for any i, j ∈ S

lim
n∈{−N+1,...,N−1}

N→∞
μAB
i (n) = q−

i (n)P(Xn = i) q+
i (n) = q−

i πi q
+
i = μAB

i , (36)

lim
n∈{−N+1,...,N−2}

N→∞
f ABi j (n) = q−

i (n)P(Xn = i) Pi j q
+
j (n + 1) = q−

i πi Pi j q
+
j = f ABi j ,

(37)

lim
n∈{−N+1,...,N−2}

N→∞
kA→(n) =

∑

i∈A
j∈S

f ABi j (n) =
∑

i∈A
j∈S

f ABi j = kA→, (38)

lim
n∈{−N+2,...,N−1}

N→∞
k→B(n) =

∑

i∈S
j∈B

f ABi j (n − 1) =
∑

i∈S
j∈B

f ABi j = k→B . (39)

��

5.5 Numerical Example 3: Time-Homogeneous, Finite-Time Dynamics on a 5-State
Network

We consider a time-homogeneous Markov chain over T = {0, 1, . . . , N − 1}, N = 5
with the transition rules given by P(n) = P for all n ∈ {0, 1, . . . , N − 2}. P is the
transition matrix used in Example 1, and the initial density is given by the stationary
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(a) (b)

Fig. 7 The transition statistics of the finite-time system of Example 3 are shown for times n ∈ {0, . . . , 4}.
In a, the node color indicates the value of the normalized distribution, ranging from yellow (low values)
via orange to purple (high value). In b, the strength of the effective current from one state i to state j is
shown by the thickness and grayscale of the arrow pointing from i to j , and rates kA→

n , respectively, k→B
n+1

are shown by the color of the nodes A and B of the effective current plot (Color figure online)

Fig. 8 The dynamics of the finite-time, time-inhomogeneous system (Example 4) are given by a P(n) =
P + K at even times, and b P(n) = P − K at odd times

density π of P . Thus, we are in the same setting as before in Example 1, but we are
now looking at transitions between A and B that are restricted to take place within the
finite-time window.

The transition statistics computed for this example are shown in Fig. 7. Since the
time interval was chosen rather small, transitions via 1, that usually do a detour to
the metastable state 2, are very unlikely. The transition path via 3 is more likely, we
can see that the effective current through 3 is much stronger, and also, the normalized
reactive distribution indicates that it is the most likely to be in node 3 when reactive.
We also note that the rate k̄ AB5 = 0.005 is much smaller than in the stationary case,
and only few transitions from A to B are completed (on average) in the short time
frame {0, 1, . . . , N − 1}.

5.6 Numerical Example 4: Time-Inhomogeneous, Finite-Time Dynamics on a
5-State Network

As a next example, we consider a time-inhomogeneous chain over the finite-time
window T = {0, . . . , N − 1}, N = 5. We again set the stationary density of P as an
initial density and let the transition matrices depend on the time but in such a way that
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(a) (b)

Fig. 9 Here we show a the normalized distribution and b the current of transitions from A to B for the
finite-time, time-inhomogeneous system (Example 4)

1
N−1

∑
n P(n) = P . For any n ∈ {0, . . . , N − 2}, let

P(n) =
{
P + K if n (mod 2) = 0
P − K if n (mod 2) = 1

where K is the 0-rowsum matrix as given in Fig. 8. At times n = 0, 2, the transition
matrices become P+K and the subsets A and B are less metastable. At times n = 1, 3
the transition matrices become P − K and A and B are more metastable.

The computed transition statistics are shown in Fig. 9. The effective current plot
shows that the majority of reactive trajectories are leaving A at times n = 0, 2 and
go to 3 and at times n = 1, 3, they move from 3 to B. The time-averaged rate for
the finite-time, time-homogeneous case from Example 3 is k̄ AB5 = 0.005, while the
time-averaged rate for this time-inhomogeneous case is k̄ AB5 = 0.012, more than two
times larger. We thus demonstrated that by adding a forcing to the time-homogeneous
dynamics that changes the metastability of A and B, we can increase the rate of
transitions, even though the forcing vanishes on average. We note that utilizing pertur-
bations that tip a system out of equilibrium is used in statisticalmechanics to accelerate
convergence of statistics (Hamelberg et al. 2004; Lelièvre et al. 2013).

5.7 Numerical Example 5: Growing Finite-TimeWindow for the 5-State Network

Let us consider the stationary Markov chain introduced in Example 3 but on the time
intervalT = {−N , . . . , N }. Wewant to see numerically that the forward, respectively,
backward committor at timen converges under the l2-norm to the forward, respectively,
backward committor of the infinite-time, stationary system by extending the time
interval T = {−N , . . . , N } for N big enough such that N ± n � 1, i.e.,

lim
n∈{−N ,...,N−1}

N±n�1

||q+ − q+(n)||2 ≈ 0, lim
n∈{−N+1,...,N }

N±n�1

||q− − q−(n)||2 ≈ 0.

In Fig. 10, we show this convergence numerically; note that the statistics will not
necessarily converge near the boundary of the interval.
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Fig. 10 The committors at time n = 0 of the finite-time chain with stationary dynamics (Example 5)
converge under the l2-norm to the committors of the infinite-time chain (Example 1). The l2-errors decrease
at an exponential rate

6 Numerical Examples in a Triple Well Landscape

In this section, we exemplarily study the transition behavior of a particle diffusing in a
triple well energy landscape for several scenarios: for infinite-time, stationary dynam-
ics (Sect. 6.1), for infinite-time dynamics with an added periodic forcing (Sect. 6.2),
and for stationary, finite-time dynamics (Sects. 6.3, 6.4).

6.1 Numerical Example 6: Infinite-Time, Stationary Dynamics

We consider the diffusive motion of a particle (Xt )t∈R in R
2 according to the over-

damped Langevin equation

dXt = −∇V (Xt )dt + σdWt (40)

where σ > 0 is the diffusion constant, Wt is a 2−dimensional standard Brownian
motion (Wiener process), and V (x, y) : R2 → R is the triple well potential given in
Metzner et al. (2009), Schütte and Sarich (2013),

V (x, y) =3

4
exp

(

−x2 −
(

y − 1

3

)2
)

− 3

4
exp

(

−x2 −
(

y − 5

3

)2
)

− 5

4
exp

(
− (x − 1)2 − y2

)
− 5

4
exp

(
− (x + 1)2 − y2

)
+ 1

20
x4

+ 1

20

(

y − 1

3

)4

(41)

and shown in Fig. 11. The particle is pushed by the force −∇V (x, y) “downhill” in
the energy landscape, while simultaneously being subject to a random forcing due
to the Brownian motion term. The stationary density of the process is given by the
Boltzmann distribution

π(x, y) = Z−1 exp(−2σ−2V (x, y))
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(a) (b)

Fig. 11 a Triple well landscape V (x, y) and the resulting force when unperturbed and when periodically
perturbed. b The negative gradient −∇V (x, y) is the force that each particle in Example 6 without pertur-
bation feels, while in Example 7, a periodically varying circulative force is added resulting at times m = 0
and m = 3 in the shown forces

Fig. 12 TPT objects for stationary, infinite-time dynamics in the triple well landscape as explained in
Example 6. The last plot shows the accumulated f + for each state i (see the footnote)

with normalization factor Z .
Before applying TPT on this example, we have to discretize the process into a

Markov chain. We want to estimate a transition matrix that gives us the probability
to jump between discrete cells of the state space [−2, 2] × [−1, 2], here we choose
regular square grid cells {Ai , i = 1, . . .} of size 0.2×0.2. By means of Ulams method
[Ulam 1960, see also (Koltai 2011a, Chapter 2.3) for a summary of the method] one
can project the dynamics of (40) onto the space spanned by indicator functions on the
grid cells and then further approximate the projected dynamics by a Monte Carlo sum
of sampled trajectory snippets

Pi j ≈ 1

C

C∑

c=1

1A j (Ŷ
c), (42)

where we sample X̂ c, c = 1, . . . ,C , uniformly from the cell Ai and we get Ŷ c by
evolving the sample forward in time according to (40) with time step τ (e.g., by using
the Euler–Maruyama discretization of the stochastic differential equation (40)). The
resulting process defined by the transition matrix P is a discrete-time, discrete-space
Markov chain with time steps τ .6

We are now interested in the transition behavior between the deep wells of V when
the dynamics are stationary. Therefore, we choose sets A and B as centered at (−1, 0)
and (1, 0), respectively, and we ask: Which transition path from A to B is more likely;

6 As an alternative for estimating the transition matrix for an overdamped Langevin process (such as (40)),
one can use the square root approximation to get a cheap estimate of the rate matrix (Lie et al. 2013; Heida
2018) and thereof get the transition matrix.
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via the third metastable shallow well at (0, 1.5), or via the direct barrier between A
and B?

The computed committor functions and statistics of the reactive trajectories are
shown in Fig. 12, and we chose σ = 1, τ = 0.3 and sampled C = 10, 000 for
estimating the transition matrix. Since the dynamics are reversible, the backward
committor is just 1 − q+. Also, we can see that the committors are close to constant
inside the metastable sets (the wells) due to the fast mixing inside the wells, but vary
across the barriers. The computed effective current7 indicates that most transitions
occur via the direct barrier between A and B. The effective current through the shallow
well at (0, 1.5) is only very small, but due to the metastability of the well, reactive
trajectories taking that path are stuck there for long and thus contributing a lot to the
density μAB . The rate of transitions is kAB = 0.0142, and the mean transition time is
t AB = 10.01.

6.2 Numerical Example 7: Periodic, Infinite-Time Dynamics

Next, we are interested in studying transitions in the triple well landscape
when a periodically varying forcing is applied. We add the force F(x1, x2, t) =
1.4 cos

( 2π t
1.8

)
(−x2, x1) that alternatingly due to the cosine modulation exhibits an

anticlockwise circulation and a clockwise circulation, to the dynamics (40), resulting
in the diffusion process with 1.8-periodic forcing,

dXt = (−∇V (Xt ) + F(Xt , t))dt + σdWt . (43)

We again discretize the dynamics and estimate transition matrices P0, P1, . . . , PM−1
(M = 6) for τ -spaced time points during the period, and each transition matrix is
mapping τ = 0.3 into the future. In Fig. 11, the force from the potential plus circulation
is shown for time points m = 0 and m = 3.

Considering the same A and B as before, we are now interested in the transition
channels when the dynamics are equilibrated to the periodic forcing. The computed
results are shown in Fig. 13, the reactive trajectories take the lower channel via the
direct barrier at the beginning of the period due to the additional push from the forc-
ing, and the upper channel via the shallow well toward the end of the period when
the applied circulation is clockwise. It is interesting to note that the rate of reactive
trajectories leaving A and entering B is highest toward the end of the period, when
the added forcing is clockwise and the preferred channel is the upper channel. This
is contrary to the stationary example before, where reactive trajectories dominantly
passed the lower channel.

7 Regarding plotting f +: If the underlying process is a diffusion process in Rd , we can estimate for each i
the vector of the average direction of the effective current and the amount, i.e., to each i at time n, we can
attach the vector

∑
j �=i f +

i j (n)vi j , where vi j is the unit vector pointing from the center of the grid cell i to
the center of the grid cell j (see, e.g., Fig. 12).
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(a)

(b)

Fig. 14 a The density and b effective current of reactive trajectories for the stationary triple well dynamics
over a finite-time window {0, . . . , 5}, see Example 8. Note that some quantities are not defined for all
n ∈ {0, . . . , N − 1}

6.3 Numerical Example 8: Finite-Time, Time-Homogeneous Dynamics

To demonstrate the effect of the finite-time restriction on the transition behavior
between A and B, we now study the time-homogeneous triple well dynamics restricted
to the time windowT = {0, . . . , N −1}, N = 6, and initiated in the stationary density.

Even though we study the same underlying dynamics as in the stationary, infinite-
time case (Example 6), the possible transition paths between A and B are limited to the
pathway that is fast to traverse, i.e., the lower channel via the direct barrier, see Fig. 14.
Since only a small portion of the reactive trajectories from the infinite-time example
6 has a short enough transition time to be considered in this case, the average rate of
transitions k̄ AB6 = 0.0017 is much lower than the corresponding rate kAB = 0.0142 in
the infinite-time case (Example 6), and the average time a transition takes t̄ AB6 = 2.055
is much shorter than in the infinite-time case.

6.4 Numerical Example 9: Bifurcation Studies Using Finite-Time TPT

Last, we want to highlight the usage of finite-time TPT to study large qualitative
changes in the transition behavior of a system. We consider the stationary triple well
example over a finite interval T = {0, . . . , N − 1}, but this time with a smaller noise
strength of σ = 0.26 compared to the previous examples.

As we increase the interval length N from N = 20 to N = 500, we allow reactive
trajectories to be longer and longer, and thus, the average reactive trajectory changes.
Whereas for N = 20, most of the density and current are around the lower transition
channel, see Fig. 15, for N = 500, most of the density and current are around the
upper transition channel. The transition behavior restricted to the time interval of size
N = 500 is already close to the infinite-time transition dynamics, this can be seen by
comparing the case of N = 500 with Fig. 1b, where the effective current of the same
dynamics but in infinite time is depicted.
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(a)

(b)

Fig. 15 Qualitative changes in the transition behavior for finite-time, stationary TPT and increasing time-
interval lengths, see Example 9. The plots show a the density of reactive trajectories (normalized to being
reactive) and b the current at a time point in the middle of the finite-time interval

7 Conclusion

In this paper, we generalized transition path theory such that it is applicable not only
to infinite-time, stationary Markov processes but also to periodically varying and to
time-dependent Markov processes on finite-time intervals. We restricted our results
to Markov processes on discrete state spaces and in discrete time, but generalizations
should be straightforward (e.g., followingWeinan and Vanden-Eijnden 2006;Metzner
et al. 2009).

The theory is intended to generalize TPT toward applicability in, e.g., non-
equilibrium molecular, climate, fluid, or social dynamics (agent-based models). In
most of these applications, the problem of computing the TPT objects arises, as the
state space can be high- and also infinite dimensional. This is a non-trivial task even in
the traditional TPT context stemming from molecular dynamics—where these tools
have nevertheless been successfully applied. Resolving the time-dependence poses
an additional computational challenge. All this goes beyond the scope of the present
work and will be addressed elsewhere.

First results toward the application of stationary TPT in high-dimensional state
spaces have already been proposed. In Thiede et al. (2019), a workaround was given
for solving the committor equations in the case of infinite-time, stationary dynamics
by a Galerkin projection which works well as long as the dynamics of the Markov
chain can be described by low-dimensional representations. Another interesting first
work (Khoo et al. 2019) goes into the direction of using neural networks for solving
the committor equations in high dimensions.

Further, the interpretability and visualization of the transition statistics in high
dimensions or for large time intervals (large N or M) is a point of future research. In
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Metzner et al. (2009), an algorithm for computing transition channels from the effective
current of reactive trajectories was proposed, and a generalization for time-dependent
dynamics is a ongoing work.

An implementation of the tools developed in this paper can be found at www.github.
com/LuzieH/pytpt.
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A Appendix

A.1 Committors for Periodic, Infinite-Time Dynamics: Augmenting the State Space

As an alternative to the approach in Sect. 4.2, we can consider the dynamics and
the committor equations on the augmented state space SM . The augmented transition
matrix PAug of size M |S| × M |S| contains all transition matrices P0, . . . , PM−1 and
applies them consecutively in a row

PAug =

⎛

⎜
⎜
⎜
⎝

0 P0 0
. . .

. . .

0 PM−2
PM−1 0,

⎞

⎟
⎟
⎟
⎠

,

e.g. applying PAug to a space-time distribution with mass only at the 0−th time
point shifts all the mass to the next time point. Since the transition matrices are row-
stochastic, so is the augmented transition matrix.

With that set, we can take a slightly different approach for writing the forward
committor equations as one augmented matrix equation. Again, we need to solve the
committor only on C ; therefore, we define the augmented |C |M ×|C |M matrix P̃Aug,
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which encodes only the transitions inside C

P̃Aug :=

⎛

⎜
⎜
⎜
⎝

0 P0|C→C
. . .

. . .

0 PM−2|C→C
PM−1|C→C 0

⎞

⎟
⎟
⎟
⎠

and the |C |M-dimensional vectors

q̃+ :=

⎛

⎜
⎜
⎜
⎝

(q+
0,i )i∈C

(q+
1,i )i∈C

...

(q+
M−1,i )i∈C

⎞

⎟
⎟
⎟
⎠

and b̃ :=

⎛

⎜
⎜
⎜
⎝

(
∑

j∈B P0,i j )i∈C
(
∑

j∈B P1,i j )i∈C
...

(
∑

j∈B PM−1,i j )i∈C

⎞

⎟
⎟
⎟
⎠

.

Then from (16), we arrive at the following equation for q̃+

q̃+ = P̃Aug q̃
+ + b̃ ⇔ (I − P̃Aug) q̃

+ = b̃. (44)

Note that (I − P̃Aug) is large but sparse compared to using the stacked equations (18).
For the backward committor equations, we proceed similarly and arrive at the

equations

q̃− = P̃−
Augq̃

− + ã ⇔ (I − P̃−
Aug)q̃

− = ã (45)

where we defined

P̃−
Aug :=

⎛

⎜
⎜
⎜
⎜
⎝

0 P−
0

∣
∣
C→C

P−
1

∣
∣
C→C

. . .

. . . 0
P−
M−1

∣
∣
C→C

0

⎞

⎟
⎟
⎟
⎟
⎠

, q̃− :=

⎛

⎜
⎜
⎜
⎝

(q−
0,i )i∈C

(q−
1,i )i∈C

...

(q−
M−1,i )i∈C

⎞

⎟
⎟
⎟
⎠

and

ã :=

⎛

⎜
⎜
⎜
⎜
⎝

(
∑

j∈A P−
0,i j )i∈C

(
∑

j∈A P−
1,i j )i∈C

...

(
∑

j∈A P−
M−1,i j )i∈C

⎞

⎟
⎟
⎟
⎟
⎠

.

Remark A.1 This approach can also be used for studying committors and transitions in
systems with stochastic switching between different regimes. Consider the dynamics
of a Markov chain that can be in M different regimes each described by a transition
matrix Pm , m ∈ {1, . . . , M}. The probability to switch between regimes is given by
P̂ ∈ R

M×M . The committor probabilities would give the probability to next hit B and
not A, given the chain is in a certain state and regime and assuming the dynamics are
equilibrated. Note that the periodic dynamics described in this paper are just a special
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case of stochastic switching, where the switching is deterministic from timem to time
m + 1, i.e., P̂mm′ = δmm′−1 modulo M . The regime-augmented matrix can be written
as:

Pswitch
Aug =

⎛

⎜
⎝

P̂11P1 . . . P̂1M PM
...

. . .
...

P̂M1P1 . . . P̂MM PM

⎞

⎟
⎠

which is still a row-stochastic matrix, since
∑M

m′=1 P̂mm′ = 1 for all m = 1, . . . , M .
Exactly as above, Pswitch

Aug can be used for finding committor probabilities.

A.2 Proofs

A.2.1 Lemma 3.5

Proof Let us consider the joint probability that the process starting in i ∈ S at time
n ∈ Z reaches first B before A at time τ ∈ Z

+
n ∪ {∞}:

J+
i (n, τ ) := P(τ+

B (n) < τ+
A (n), τ+

A∪B(n) = τ |Xn = i).

The law of total probability lets us write the forward committor in terms of a countable
sum of the above-mentioned joint probability:

q+
i (n) =

∑

τ∈Z+
n ∪{∞}

J+
i (n, τ ) =

∑

τ∈Z+
n

J+
i (n, τ ), (46)

where we have used that P(τ+
A∪B(n) = ∞) = 0 due to the ergodicity of the process,

which ensures that the process will arrive at some time to the subset A ∪ B.
Next, by applying the same arguments of the proof of Theorem 3.2 we see that

the joint probability J+
i (n, τ ) satisfies the following iterative system of equations for

τ ∈ Z
+
n+1:

{
J+
i (n, τ ) = ∑

j∈S
Pi j J

+
j (n + 1, τ ) i ∈ C

J+
i (n, τ ) = 0 i ∈ A ∪ B

(47)

with initial condition J+
i (n, n) = 1B(i).

Last, by using (47) recursively we can compute for any i ∈ C and τ ∈ Z
+
n

J+
i (n, τ ) =

∑

in+1,...,iτ−1∈C
Piin+1 · · · Piτ−2iτ−1 J

+
i (τ − 1, τ )

=
∑

in+1...iτ−1∈C
iτ ∈B

Piin+1 · · · Piτ−1iτ , (48)
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where we recursively used J+
i (k, τ ) = 0 for any i ∈ A ∪ B and n + 1 ≤ k < τ , and

in the last iteration the fact that J+
i (τ, τ ) = 1B(i).

Putting the results (46) and (48) together completes the proof for the forward com-
mittor. The proof for the backward committor follows by using the same arguments.

��

A.2.2 Theorem 3.6

Proof First, for any i ∈ C , we have

∑

j∈S
( f ABi j − f ABji ) = q−

i πi

∑

j∈S
Pi jq

+
j − q+

i πi

∑

j∈S
q−
j P

−
i j

= q−
i πi q

+
i − q+

i πi q
−
i = 0

(49)

using the definition of the time-reversed transition probabilities and the committor
equations (4), (5) for i ∈ C .

Second, using that f ABi j = 0 if i ∈ B, j ∈ S and also if i ∈ S, j ∈ A, we can
compute

∑

i∈S
j∈S

f ABi j =
∑

i∈A
j∈S

f ABi j +
∑

i∈C
j∈S

f ABi j +
∑

i∈B
j∈S

f ABi j
︸︷︷︸
=0

=
∑

i∈S
j∈A

f ABi j
︸︷︷︸
=0

+
∑

i∈S
j∈C

f ABi j +
∑

i∈S
j∈B

f ABi j

and by the current conservation (49) for i ∈ C ,
∑

i∈C
j∈S

f ABi j = ∑
i∈C
j∈S

f ABji =
∑

j∈C
i∈S

f ABi j , we arrive at

∑

i∈A
j∈S

f ABi j +
∑

i∈S
j∈C

f ABi j =
∑

i∈S
j∈C

f ABi j +
∑

i∈S
j∈B

f ABi j

implying that
∑

i∈A
j∈S

f ABi j = ∑
i∈S
j∈B

f ABi j . ��

A.2.3 Theorem 4.4

Proof For i ∈ C , the forward committor at time n = m modulo M reads

q+
i (n) = P(τ+

B (n) < τ+
A (n)|Xn = i)

(1)= P(τ+
B (n + 1) < τ+

A (n + 1)|Xn = i)

(2)=
∑

j∈S
P(τ+

B (n + 1) < τ+
A (n + 1), Xn+1 = j |Xn = i)

(3)=
∑

j∈S
P(τ+

B (n + 1) < τ+
A (n + 1)|Xn+1 = j, Xn = i)P(Xn+1 = j |Xn = i)

(4)=
∑

j∈S
P(τ+

B (n + 1) < τ+
A (n + 1)|Xn+1 = j)Pn, j i =

∑

j∈S
q+
j (n + 1)Pn,i j (50)
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using (1) that τ+
B (n), τ+

A (n) ≥ n + 1 for i ∈ C , (2) the law of total probability, (3)
the definition of conditional probabilities, (4) the strong Markov property.

And for i ∈ A at time n, it follows from the definition that τ+
A (n) = n, whereas

τ+
B (n) > n, thus q+

i (n) = 0, in a similar way for i ∈ B, τ+
A (n) > n, τ+

B (n) = n thus
q+
i (n) = 1.
The proof for the backward committor equations follows the same lines. ��

A.2.4 Lemma 4.6

Proof We start with the case of the forward committor (16).
We can rewrite (18) with m = 0, with P0|I→J denoting the restriction of the matrix
P0 to entries from i ∈ I to j ∈ J , as the matrix equation

(q+
0,i0

)i0∈C = P0|C→C · · · PM−1
∣
∣
C→C︸ ︷︷ ︸

=:D
(q+

0,iM
)iM∈C +

M∑

τ=1

P0|C→C · · · Pτ−1
∣
∣
C→B (1)B

equivalently

(I − D)(q+
0,i0

)i0∈C =
M∑

τ=1

P0|C→C · · · Pτ−1|C→B (1)B

We note that the equation is uniquely solvable as long as (I − D) is invertible, and
(I − D) is invertible if ρ(D) < 1.

By assuming that P̄0 is irreducible, we will show that for all v ∈ R
|C|,

‖vD‖1 < ‖v‖1. Since this holds in particular for the eigenvectors, it follows that
all eigenvalues |λ| < 1 and thus ρ(D) < 1.

We know that D is a substochastic matrix (row sum is ≤ 1) since it is a product of
substochastic matrices, and that all entries are nonnegative, i.e.,

∑
j |Di j | ≤ 1 for all

i ∈ C .
Moreover, there exists at least one row with row sum less than 1 since by irre-

ducibility of P̄0, there must be at least one state i in C with a positive probability to
go to A or B. We call the first one of this kind by i∗ with

∑
j |Di∗ j | < 1. Thus, we

can compute

‖vD‖1 = ‖
∑

i

vi Di j‖1 =
∑

j

∑

i

|vi ||Di j | =
∑

i

|vi |
⎛

⎝
∑

j

|Di j |
⎞

⎠

=
⎛

⎝
∑

i �=i∗
|vi |

∑

j

|Di j |
⎞

⎠ + |vi∗ |
∑

j

|Di∗ j |

≤
∑

i �=i∗
|vi | + |vi∗ |

∑

j

|Di∗ j | <
∑

i

|vi | = ‖v‖1.
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We have shown that a unique solution which we will call q+
0 exists. The forward

committors for m = 1, . . . , M − 1 can uniquely be computed thereof by using (16).
For the case of the backward committor, we can proceed analogously by using the

time-reversed transition probabilities mapping M instances back

P̄−
m := P−

m · P−
m−1 · · · P−

m−M+1,

and by noting that if P̄0 is irreducible, also P̄−
0 is irreducible, which follows from the

definition of irreducibility of P̄0 and using (15). ��

A.2.5 Theorem 4.8

Proof To show that the flux conservation in node i ∈ C holds, we compute

∑

j∈S

(
f ABm,i j − f ABm−1, j i

)
(1)= πm,i q

−
m,i

∑

j∈S
Pm,i j q

+
m+1, j − πm,i q

+
m,i

∑

j∈S
q−
m−1, j P

−
m,i j

(2)= 0

using (1) P−
m,i jπm,i = Pm−1, j iπm−1, j and (2) the backward and forward committor

equations for i ∈ C .
Next, we want to show that the current of reactive trajectories leaving A during one

period equals the current entering B during one period. We calculate

∑

m∈M

⎛

⎜
⎜
⎝

∑

i∈S
j∈S

f ABm,i j

⎞

⎟
⎟
⎠ =

∑

m∈M

⎛

⎜
⎜
⎝

∑

i∈A
j∈S

f ABm,i j +
∑

i∈C
j∈S

f ABm,i j +
∑

i∈B
j∈S

f ABm,i j
︸︷︷︸

=0

⎞

⎟
⎟
⎠

=
∑

m∈M

⎛

⎜
⎜
⎝

∑

i∈S
j∈A

f ABm,i j
︸︷︷︸

=0

+
∑

i∈S
j∈C

f ABm,i j +
∑

i∈S
j∈B

f ABm,i j

⎞

⎟
⎟
⎠

using that f ABm,i j = 0 if i ∈ B, j ∈ S and if i ∈ S, j ∈ A. And by the current
conservation for i ∈ C , m ∈ M and by relabeling i, j,m,

∑

m∈M

∑

i∈C
j∈S

f ABm,i j =
∑

m∈M

∑

i∈C
j∈S

f ABm−1, j i =
∑

m∈M

∑

j∈C
i∈S

f ABm,i j

we arrive at

∑

m∈M

⎛

⎜
⎜
⎝

∑

i∈A
j∈S

f ABm,i j +
∑

i∈S
j∈C

f ABm,i j

⎞

⎟
⎟
⎠ =

∑

m∈M

⎛

⎜
⎜
⎝

∑

i∈S
j∈C

f ABm,i j +
∑

i∈S
j∈B

f ABm,i j

⎞

⎟
⎟
⎠
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implying that
∑

m∈M
∑

i∈A
j∈S

f ABm,i j = ∑
m∈M

∑
i∈S
j∈B

f ABm,i j . ��

A.2.6 Theorem 5.2

Proof First, we recall what we have already seen in the proof of Theorem 4.4. If i ∈ A
for any n ∈ {0, . . . , N − 1} we have that q+

i (n) = 0, q−
i (n) = 1 and if i ∈ B for any

n ∈ {0, . . . , N − 1} we have that q+
i (n) = 1, q−

i (n) = 0.
Second, we find a final condition for the forward committor on i ∈ C

q+
i (N − 1) = P(τ+

B (N ) < τ+
A (N )|XN = i) = P(XN ∈ B|XN = i)

(1)= 0

and an initial condition for the backward committor on i ∈ C

q−
i (0) = P(τ−

A (0) > τ−
B (0)|X0 = i) = P(X0 ∈ A|X0 = i)

(2)= 0,

where we have used in (1) and (2) that i ∈ C .
Third, by following the same arguments used to prove (50) (in the proof of Theorem

4.4) we get for any n ∈ {0, . . . , N − 2} that

q+
i (n) =

∑

j∈S
Pi j (n) q+

j (n + 1).

Analogously, for any n ∈ {1, . . . , N − 1} we get that

q−
i (n) =

∑

j∈S
P−
i j (n) q−

j (n − 1).

��
A.2.7 Theorem 5.5

Proof First, for any i ∈ C and n ∈ {1, . . . , N − 2} we have on one hand that

∑

j∈S
f ABi j (n) = q−

i (n)λn(i)
(∑

j∈S
Pi j (n)q+

j (n + 1)
)

(1)= q−
i (n)λn(i)q

+
i (n)

(51)

and on the other hand that
∑

j∈S
f ABji (n − 1) =

∑

j∈S
q−
j (n − 1)λn−1( j)Pji (n − 1)q+

i (n)

(2)= q+
i (n)λn(i)

(∑

j∈S
P−
i j (n)q−

j (n − 1)
)

(3)= q+
i (n)λn(i)q

−
i (n),

(52)
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where (1) and (3) follow by (24) and (25) and (2) follows by (23).
Second, by using that f ABi j (n) = 0 for any n ∈ {0, . . . , N − 2} if i ∈ B, j ∈ S and

if i ∈ S, j ∈ A we arrive at the following equality

N−2∑

n=0

⎛

⎜
⎜
⎝

∑

i∈S
j∈S

f ABi j (n)

⎞

⎟
⎟
⎠ =

N−2∑

n=0

⎛

⎜
⎜
⎝

∑

i∈A
j∈S

f ABi j (n) +
∑

i∈C
j∈S

f ABi j (n)

⎞

⎟
⎟
⎠

=
N−2∑

n=0

⎛

⎜
⎜
⎝

∑

i∈S
j∈C

f ABi j (n) +
∑

i∈S
j∈B

f ABi j (n)

⎞

⎟
⎟
⎠ .

Then, we show that

N−2∑

n=0

∑

i∈C
j∈S

f ABi j (n) =
∑

i∈C
j∈S

f ABi j (0) +
N−2∑

n=1

∑

i∈C
j∈S

f ABi j (n)
(4)=

N−2∑

n=1

∑

i∈C
j∈S

f ABji (n − 1)

(5)=
N−3∑

n=0

∑

j∈C
i∈S

f ABi j (n) +
∑

j∈C
i∈S

f ABi j (N − 2) =
N−2∑

n=0

∑

j∈C
i∈S

f ABi j (n),

(53)

where in (4) we have applied the time-dependent current conservation for i ∈ C ,
n ∈ {1, . . . , N − 2} and we have used that f ABi j (0) = 0, and in (5) we have relabeled

i, j and used that f ABi j (N − 2) = 0. As a consequence,

N−2∑

n=0

∑

i∈A
j∈S

f ABi j (n) =
N−2∑

n=0

∑

i∈S
j∈B

f ABi j (n).

��
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