dc.contributor.author
Ritzer, Maurizio
dc.contributor.author
Schönherr, Sven
dc.contributor.author
Schöppe, Philipp
dc.contributor.author
Larramona, Gerardo
dc.contributor.author
Chone, Christophe
dc.contributor.author
Gurieva, Galina
dc.contributor.author
Johannes, Andreas
dc.contributor.author
Ritter, Konrad
dc.contributor.author
Martinez-Criado, Gema
dc.contributor.author
Schorr, Susan
dc.date.accessioned
2020-12-02T11:08:48Z
dc.date.available
2020-12-02T11:08:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28588
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28337
dc.description.abstract
Highly performing kesterite-based Cu2ZnSn(S,Se)(4)(CZTSSe) thin-film solar cells are typically produced under Cu-poor and Zn-rich synthesis conditions. However, these processing routes also facilitate the formation of secondary phases as well as deviations from stoichiometry, causing intrinsic point defects. Herein, the local composition of CZTSSe absorbers prepared with different nominal cation concentrations is investigated by applying energy dispersive X-ray spectroscopy and synchrotron X-ray fluorescence spectroscopy at the nanoscale to cross-sectional lamellae. The findings confirm the formation of ZnS(Se) secondary phases, whose presence, number, and dimension strongly increase with the reduction of the nominal Cu and increment of the nominal Zn content. Furthermore, the local compositions of the CZTSSe phase within the absorber reveal strong variations, leading to collateral and multiple off-stoichiometry types of the kesterite phase in the absorber, which cause different intrinsic point defects. Therefore, the off-stoichiometry type determined from the integral composition does not represent the complete true picture of this complex material system. Accordingly, the correlation of integral composition with electrical properties or conversion efficiency may be misleading. Overall, the approach provides new experimental insights into the nanoscale relationship among local compositional fluctuations, off-stoichiometry types, and secondary phases in these promising photovoltaic materials.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
energy dispersive X-ray spectroscopy
en
dc.subject
thin-film photovoltaics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Interplay of Performance-Limiting Nanoscale Features in Cu2ZnSn(S,Se)(4)Solar Cells
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2000456
dcterms.bibliographicCitation.articlenumber
2000456
dcterms.bibliographicCitation.doi
10.1002/pssa.202000456
dcterms.bibliographicCitation.journaltitle
physica status solidi (a) – applications and materials science
dcterms.bibliographicCitation.number
21
dcterms.bibliographicCitation.volume
217
dcterms.bibliographicCitation.url
https://doi.org/10.1002/pssa.202000456
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eisbn
1862-6319
dcterms.isPartOf.issn
1862-6300
refubium.resourceType.provider
WoS-Alert