Kinase inhibitors are a major focus in drug development. Recent work shows that subtle temperature changes in the physiologically relevant temperature range can dramatically alter kinase activity and specificity. We argue that temperature is an essential factor that should be considered in inhibitor screening campaigns. In many cases, high-throughput screening is performed at room temperature or 30 degrees C, which may lead to many false positives and false negatives when evaluating potential inhibitors in the physiological temperature range. As one example, we discuss a new antimalaria compound that inhibits the highly temperature-sensitive kinase CLK3 (CDC2-like kinase 3) fromPlasmodium falciparum.