After selective carious tissue removal, residual carious lesions remain radiographically detectable. Radiopaque tagging resolves the resulting diagnostic uncertainty but impedes bond strengths of adhesives to tagged dentin. We developed a protocol mitigating these detrimental effects. A 30%/50%/70% SnCl2 solution was dissolved in distilled water or a 30%/50%/90% ethanol solution (E30/60/90) and applied to artificially induced dentin lesions. Tagging effects were radiographically evaluated using transversal wavelength-independent microradiography (n = 6/group). Groups with sufficient tagging effects at the lowest SnCl2 concentrations were used to evaluate how tagging affected the microtensile bond strength of a universal adhesive (Scotchbond Universal) to sound and carious dentin (n = 10/group). Two different protocols for removing tagging material were tested: 15 s phosphoric acid etching and 5 s rotating brush application. Scanning/backscattered electron microscopy (SEM/BSE) and energy-dispersive X-ray spectroscopy (EDS) were used to assess surfaces after tagging and removal. The most promising removal protocol was revalidated microradiographically. Tagging significantly increased the radiopacity, with consistent effects for 30% SnCl2 dissolved in water or E30. Microscopically, tagged surfaces showed a thick carpet of SnCl2, and tagging reduced bond strengths significantly on carious dentin but not on sound dentin (p < 0.01). On carious dentin, removal of tagging material using acid etching and rotating brush was microscopically confirmed. Acid etching also mitigated any bond strength reduction (median: 21.3 MPa; interquartile range: 10.8 MPa) compared with nontagged dentin (median: 17.4 MPa; interquartile range: 20.6 MPa). This was not the case for brushing (median: 13.2 MPa; interquartile range: 13.9 MPa). Acid etching minimally reduced the radiographic tagging effect (p = 0.055). Phosphoric acid etching reduces the detrimental bond-strength effects of tagging without significantly decreasing radiographic tagging effects when using a universal adhesive.