dc.contributor.author
Bunnett, Dominic
dc.date.accessioned
2020-05-27T12:36:26Z
dc.date.available
2020-05-27T12:36:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27333
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27089
dc.description.abstract
In this thesis we construct and study the moduli of hypersurfaces in toric orbifolds. A hypersurface in a variety X is an effective Weil divisor. Explicitly, we construct a quasi- projective coarse moduli space in the category of schemes of quasismooth hypersurfaces in certain toric orbifolds. Such a moduli space has the property that each geometric point represents a hypersurface of a given class up to change of Cox coordinates. Such schemes are constructed as quotients of algebraic group actions. We also examine the moduli spaces in low dimensions and degrees.
en
dc.format.extent
xi, 141 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Algebraic Geometry
en
dc.subject
hypersurfaces
en
dc.subject
toric orbifolds
en
dc.subject.ddc
500 Natural sciences and mathematics::510 Mathematics::516 Geometry
dc.title
Moduli of hypersurfaces in toric orbifolds
dc.contributor.gender
male
dc.contributor.firstReferee
Hoskins, Victoria
dc.contributor.furtherReferee
Kirwan, Frances
dc.date.accepted
2019-09-16
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-27333-9
refubium.affiliation
Mathematik und Informatik
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access
dcterms.accessRights.proquest
accept