dc.contributor.author
Yang, Zechao
dc.contributor.author
Lotze, Christian
dc.contributor.author
Corso, Martina
dc.contributor.author
Baum, Sebastian
dc.contributor.author
Franke, Katharina J.
dc.contributor.author
Pascual, José I.
dc.date.accessioned
2020-04-09T12:54:01Z
dc.date.available
2020-04-09T12:54:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27100
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26861
dc.description.abstract
Molecular recognition is a crucial driving force for molecular self‐assembly. In many cases molecules arrange in the lowest energy configuration following a lock‐and‐key principle. When molecular flexibility comes into play, the induced‐fit effect may govern the self‐assembly. Here, the self‐assembly of dicyanovinyl‐hexathiophene (DCV6T) molecules, a prototype specie for highly efficient organic solar cells, on Au(111) by using low‐temperature scanning tunneling microscopy and atomic force microscopy is investigated. DCV6T molecules assemble on the surface forming either islands or chains. In the islands the molecules are straight—the lowest energy configuration in gas phase—and expose the dicyano moieties to form hydrogen bonds with neighbor molecules. In contrast, the structure of DCV6T molecules in the chain assemblies deviates significantly from their gas‐phase analogues. The seemingly energetically unfavorable bent geometry is enforced by hydrogen‐bonding intermolecular interactions. Density functional theory calculations of molecular dimers quantitatively demonstrate that the deformation of individual molecules optimizes the intermolecular bonding structure. The intermolecular bonding energy thus drives the chain structure formation, which is an expression of the induced‐fit effect.
en
dc.format.extent
15 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
atomic force microscopy
en
dc.subject
density functional theory
en
dc.subject
hydrogen bonding
en
dc.subject
induced‐fit effect
en
dc.subject
scanning tunneling microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Direct imaging of the induced‐fit effect in molecular self‐assembly
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/smll.201804713
dcterms.bibliographicCitation.journaltitle
Small
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1002/smll.201804713
refubium.affiliation
Physik
refubium.note.author
This is the peer reviewed version of the following article:
Yang, Z., Lotze, C., Corso, M., Baum, S., Franke, K. J., & Pascual, J. I. (2019). Direct Imaging of the Induced‐Fit Effect in Molecular Self‐Assembly. Small, 15(12), 1804713. https://doi.org/10.1002/smll.201804713,
which has been published in final form at http://dx.doi.org/10.1002/smll.201804713. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1613-6810
dcterms.isPartOf.eissn
1613-6829