dc.contributor.author
Sbierski, Björn
dc.contributor.author
Fräßdorf, Christian
dc.date.accessioned
2020-02-25T10:51:15Z
dc.date.available
2020-02-25T10:51:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26741
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26498
dc.description.abstract
The self-consistent Born approximation quantitatively fails to capture disorder effects in semimetals. We present an alternative, simple-to-use nonperturbative approach to calculate the disorder-induced self-energy. It requires a sufficient broadening of the quasiparticle pole and the solution of a differential equation on the imaginary frequency axis. We demonstrate the performance of our method for various paradigmatic semimetal Hamiltonians and compare our results to exact numerical reference data. For intermediate and strong disorder, our approach yields quantitatively correct momentum-resolved results. It is thus complementary to existing renormalization group treatments of weak disorder in semimetals.
en
dc.format.extent
12 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
density of states
en
dc.subject
electronic structure
en
dc.subject
topological materials
en
dc.subject
disordered systems
en
dc.subject
Weyl semimetal
en
dc.subject
diagrammatic methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Strong disorder in nodal semimetals: Schwinger-Dyson–Ward approach
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
020201
dcterms.bibliographicCitation.doi
10.1103/PhysRevB.99.020201
dcterms.bibliographicCitation.journaltitle
Physical review
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
99
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevB.99.020201
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9950
dcterms.isPartOf.eissn
2469-9969