dc.contributor.author
Köbis, Elisabeth
dc.contributor.author
Köbis, Markus A.
dc.contributor.author
Qin, Xiaolong
dc.date.accessioned
2020-02-06T13:57:49Z
dc.date.available
2020-02-06T13:57:49Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26600
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26357
dc.description.abstract
This paper explores new notions of approximate minimality in set optimization using a set approach. We propose characterizations of several approximate minimal elements of families of sets in real linear spaces by means of general functionals, which can be unified in an inequality approach. As particular cases, we investigate the use of the prominent Tammer–Weidner nonlinear scalarizing functionals, without assuming any topology, in our context. We also derive numerical methods to obtain approximate minimal elements of families of finitely many sets by means of our obtained results.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
set optimization
en
dc.subject
set relations
en
dc.subject
nonlinear scalarizing functional
en
dc.subject
algebraic interior
en
dc.subject
vector closure
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
An Inequality Approach to Approximate Solutions of Set Optimization Problems in Real Linear Spaces
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
143
dcterms.bibliographicCitation.doi
10.3390/math8010143
dcterms.bibliographicCitation.journaltitle
Mathematics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.3390/math8010143
refubium.affiliation
Mathematik und Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2227-7390