dc.contributor.author
Hahn, F.
dc.contributor.author
Pappa, A.
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2019-10-21T09:34:15Z
dc.date.available
2019-10-21T09:34:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25757
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25518
dc.description.abstract
Quantum communication between distant parties is based on suitable instances of shared entanglement. For efficiency reasons, in an anticipated quantum network beyond point-to-point communication, it is preferable that many parties can communicate simultaneously over the underlying infrastructure; however, bottlenecks in the network may cause delays. Sharing of multi-partite entangled states between parties offers a solution, allowing for parallel quantum communication. Specifically for the two-pair problem, the butterfly network provides the first instance of such an advantage in a bottleneck scenario. In this paper, we propose a more general method for establishing EPR pairs in arbitrary networks. The main difference from standard repeater network approaches is that we use a graph state instead of maximally entangled pairs to achieve long-distance simultaneous communication. We demonstrate how graph-theoretic tools, and specifically local complementation, help decrease the number of required measurements compared to usual methods applied in repeater schemes. We examine other examples of network architectures, where deploying local complementation techniques provides an advantage. We finally consider the problem of extracting graph states for quantum communication via local Clifford operations and Pauli measurements, and discuss that while the general problem is known to be NP-complete, interestingly, for specific classes of structured resources, polynomial time algorithms can be identified.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
information theory
en
dc.subject
optical physics
en
dc.subject
quantum information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Quantum network routing and local complementation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
76
dcterms.bibliographicCitation.doi
10.1038/s41534-019-0191-6
dcterms.bibliographicCitation.journaltitle
npj Quantum Information
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41534-019-0191-6
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2056-6387