dc.contributor.author
Winter, Robin
dc.contributor.author
Montanari, Floriane
dc.contributor.author
Steffen, Andreas
dc.contributor.author
Briem, Hans
dc.contributor.author
Noé, Frank
dc.contributor.author
Clevert, Djork-Arné
dc.date.accessioned
2019-09-12T09:43:43Z
dc.date.available
2019-09-12T09:43:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25531
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25301
dc.description.abstract
One of the main challenges in small molecule drug discovery is finding novel chemical compounds with desirable properties. In this work, we propose a novel method that combines in silico prediction of molecular properties such as biological activity or pharmacokinetics with an in silico optimization algorithm, namely Particle Swarm Optimization. Our method takes a starting compound as input and proposes new molecules with more desirable (predicted) properties. It navigates a machine-learned continuous representation of a drug-like chemical space guided by a defined objective function. The objective function combines multiple in silico prediction models, defined desirability ranges and substructure constraints. We demonstrate that our proposed method is able to consistently find more desirable molecules for the studied tasks in relatively short time. We hope that our method can support medicinal chemists in accelerating and improving the lead optimization process.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
molecular optimization
en
dc.subject
latent space
en
dc.subject
drug discovery
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Efficient multi-objective molecular optimization in a continuous latent space
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/C9SC01928F
dcterms.bibliographicCitation.journaltitle
Chemical science
dcterms.bibliographicCitation.number
34
dcterms.bibliographicCitation.originalpublishername
RSC
dcterms.bibliographicCitation.originalpublisherplace
Cambridge
dcterms.bibliographicCitation.pagestart
8016
dcterms.bibliographicCitation.pageend
8024
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1039/C9SC01928F
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik / Arbeitsgruppe Computational Molecular Biology
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2041-6520
dcterms.isPartOf.eissn
2041-6539
refubium.resourceType.provider
WoS-Alert