dc.contributor.author
Onorati, E.
dc.contributor.author
Buerschaper, Oliver
dc.contributor.author
Kliesch, M.
dc.contributor.author
Brown, W.
dc.contributor.author
Werner, A. H.
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2019-09-10T11:30:57Z
dc.date.available
2019-09-10T11:30:57Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25516
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-4220
dc.description.abstract
Random quantum processes play a central role both in the study of fundamental
mixing processes in quantum mechanics related to equilibration, thermalisation
and fast scrambling by black holes, as well as in quantum process design and quantum
information theory. In this work, we present a framework describing the mixing
properties of continuous-time unitary evolutions originating from local Hamiltonians
having time-fluctuating terms, reflecting a Brownian motion on the unitary group. The
induced stochastic time evolution is shown to converge to a unitary design. As a first
main result, we present bounds to the mixing time. By developing tools in representation
theory, we analytically derive an expression for a local k-th moment operator that is
entirely independent of k, giving rise to approximate unitary k-designs and quantum tensor
product expanders. As a second main result, we introduce tools for proving bounds
on the rate of decoupling from an environment with random quantum processes. By
tying the mathematical description closely with the more established one of random
quantum circuits, we present a unified picture for analysing local random quantum and
classes of Markovian dissipative processes, for which we also discuss applications.
en
dc.format.extent
43 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Hamiltonians
en
dc.subject
quantum processes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Mixing properties of stochastic quantum Hamiltonians
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00220-017-2950-6
dcterms.bibliographicCitation.journaltitle
Communications in Mathematical Physics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
905
dcterms.bibliographicCitation.pageend
947
dcterms.bibliographicCitation.volume
355
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00220-017-2950-6
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0010-3616
dcterms.isPartOf.eissn
1432-0916