Feedback is central to most forms of learning, and its reliability is therefore critical. Here, we investigated the effects of corrupted, and hence unreliable, feedback on perceptual inference. Within the framework of Bayesian inference, we hypothesised that corrupting feedback in a demanding perceptual task would compromise sensory information processing and bias inference towards prior information if available. These hypotheses were examined by a simulation and in two behavioural experiments with visual detection (experiment 1) and discrimination (experiment 2) tasks. Both experiments consisted of two sessions comprising intervention runs with either corrupted or uncorrupted (correct) feedback, and pre- and post-intervention tests to assess the effects of feedback. In the tests alone, additional prior beliefs were induced through predictive auditory cues to assess sustained effects of feedback on the balance between sensory evidence and prior beliefs. Both experiments and the simulation showed the hypothesised decrease in performance and increased reliance on prior beliefs after corrupted but not uncorrupted feedback. Exploratory analyses indicated reduced confidence regarding perceptual decisions during delivery of corrupted feedback. Our results suggest that corrupted feedback on perceptual decisions leads to sustained changes in perceptual inference, characterised by a shift from sensory likelihood to prior beliefs when those are accessible.