Background: Patients with acute ischemic stroke (AIS) and large vessel occlusion benefit from rapid access to mechanical thrombectomy in addition to intravenous thrombolysis. Prehospital triage algorithms to determine the optimal transport destination for AIS patients with unknown vessel status have so far only considered two alternatives: the nearest comprehensive (CSC) and the nearest primary stroke center (PSC). Objective: This study explores the importance of considering a larger number of PSCs during pre-hospital triage of AIS patients. Methods: Analysis was performed in random two-dimensional abstract geographic stroke care infrastructure environments and two models based on real-world geographic scenarios. Transport times to CSCs and PSCs were calculated to define sub-regions with specific triage properties. Possible transport destinations included the nearest CSC, the nearest PSC, and any of the remaining PSCs that are not closest to the scene, but transport to which would imply a shorter total time-to-CSC-via-PSC. Results: In abstract geographic environments, themedian relative size of the sub-region where a triage decision is required ranged from 34 to 92%. The median relative size of the sub-region where more than two triage options need to be considered ranged from 0 to 56%. The achievable reduction in time-to-thrombectomy (“benefit”) exceeded the increase in time-to-thrombolysis (“harm”) by a factor of 2 in 30.5–37.0%of the sub-region where more than two triage options need to be considered. Results were confirmed in geographic environments based on real-world urban and rural stroke care infrastructures. Conclusion: Pre-hospital triage algorithms for AIS patients that only take into account the nearest CSC and the nearest PSC as transport destinations may be unable to identify the optimal transport destination for a significant proportion of patients.