Background/Aims: Fibulin-3, an extracellular matrix glycoprotein, inhibits vascular oxidative stress and remodeling in hypertension. Oxidative stress is prevalent in chronic kidney disease (CKD) patients and is an important mediator of osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells (VSMCs) during hyperphosphatemia. Therefore, the present study explored the effects of Fibulin-3 on phosphate-induced vascular calcification. Methods: Experiments were performed in primary human aortic smooth muscle cells (HAoSMCs) treated with control or with phosphate without or with additional treatment with recombinant human Fibulin-3 protein or with hydrogen peroxide as an exogenous source of oxidative stress. Results: Treatment with calcification medium significantly increased calcium deposition in HAoSMCs, an effect significantly blunted by additional treatment with Fibulin-3. Moreover, phosphate-induced alkaline phosphatase activity and mRNA expression of osteogenic and chondrogenic markers MSX2, CBFA1, SOX9 and ALPL were all significantly reduced by addition of Fibulin-3. These effects were paralleled by similar regulation of oxidative stress in HAoSMCs. Phosphate treatment significantly up-regulated mRNA expression of the oxidative stress markers NOX4 and CYBA, down-regulated total antioxidant capacity and increased the expression of downstream effectors of oxidative stress PA1-1. MMP2 and MMP9 as well as BAX/BLC2 ratio in HAoSMCs, all effects blocked by additional treatment with Fibulin-3. Furthermore, the protective effects of Fibulin-3 on phosphate-induced osteogenic and chondrogenic markers expression in HAoSMCs were reversed by additional treatment with hydrogen peroxide. Conclusions: Fibulin-3 attenuates phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of VSMCs, effects involving inhibition of oxidative stress. Up-regulation or supplementation of Fibulin-3 may be beneficial in reducing the progression of vascular calcification during hyperphosphatemic conditions such as CKD. (C) 2018 The Author(s) Published by S. Karger AG, Basel.