Plastic is an anthropogenic, ubiquitous and persistent contaminant accumulating in our environment. The consequences of the presence of plastics for soils, including soil biota and the processes they drive, are largely unknown. This is particularly true for microplastic. There is only little data available on the effect of microplastics on key soil processes, including soil aggregation. Here, we investigated the consequences of polyester microfiber contamination on soil aggregation of a sandy soil under laboratory conditions. We aimed to test if the microfiber effects on soil aggregation were predominantly physical or biological. We found that soil biota addition (compared to sterile soil) had a significant positive effect on both the formation and stabilization of soil aggregates, as expected, while wet-dry cycles solely affected aggregate formation. Polyester microfiber contamination did not affect the formation and stability of aggregates. But in the presence of soil biota, microfibers reduced soil aggregate stability. Our results show that polyester microfibers have the potential to alter soil structure, and that these effects are at least partially mediated by soil biota.