High-throughput neuroimaging technology enables rapid acquisition of vast amounts of structural and functional data on multiple spatial and temporal scales. While novel methods to extract information from these data are continuously developed, there is no principled approach for the systematic integration of distinct experimental results into a common theoretical framework, yet. The central result of this dissertation is a biophysically-based framework for brain network modeling that links structural and functional data across scales and modalities and integrates them with dynamical systems theory. Specifically, the publications in this thesis i. introduce an automated pipeline that extracts structural and functional information from multimodal imaging data to construct and constrain brain models, ii. link whole-brain models with empirical EEG-fMRI (simultaneous electroencephalography and functional magnetic resonance imaging) data to integrate neural signals with simulated activity, iii. propose a framework for reverse-engineering neurophysiological dynamics and mechanisms underlying commonly observed features of neural activity, iv. document a software module that makes users acquainted with theory and practice of brain modeling, v. associate aging with structural and functional connectivity and vi. examine how parcellation size and short-range connectivity affect model dynamics. Taken together, these results form a novel approach that enables reverse-engineering of neurophysiological processes and mechanisms on the basis of biophysically-based brain models.
Zusammenfassung Hochdurchsatzverfahren zur neuronalen Bildgebung ermöglichen die schnelle Erfassung großer Mengen an strukturellen und funktionellen Daten über verschiedenen räumlichen und zeitlichen Skalen. Obwohl ständig neue Methoden zur Verarbeitung der in diesen Daten enthaltenen Informationen entwickelt werden gibt es bisher kein systematisches Verfahren um experimentelle Ergebnisse in einem gemeinsamen theoretischen Rahmenwerk zu integrieren und zu verknüpfen. Das Hauptergebnis dieser Dissertation ist ein biophysikalisch basiertes Gehirn- Netzwerkmodell das strukturelle und funktionelle Daten über verschiedene Skalen und Modalitäten hinweg verknüpft und mit dynamischer Systemtheorie vereint. Die hier zusammengefassten Publikationen i. stellen eine automatische Software-Pipeline vor die strukturelle und funktionelle Informationen aus multimodalen Bilddaten extrahiert um Gehirnmodelle zu konstruieren und zu parametrisieren, ii. verknüpfen Ganzhi rnmodel le mi t empi r i schen EEG- fMRT ( s imul tane Elektroenzephalographie und funktionelle Magnetresonanztomographie) Daten um neuronale Signale mit simulierter Aktivität zu integrieren, iii. schlagen ein Rahmenwerk vor um neurophysiologische Dynamiken und Mechanismen die häufig beobachteten Eigenschaften neuronaler Aktivität zu Grunde liegen zu rekonstruieren, iv. dokumentieren ein Software-Modul das Benutzer mit Theorie und Praxis der Gehirnmodellierung vertraut macht, v. assoziieren Alterungsprozesse mit struktureller und funktioneller Konnektivität und vi. untersuchen wie Gehirn-Parzellierung und lokale Konnektivität die Modelldynamik beeinflussen. Zusammengenommen ergibt sich ein neuartiges Verfahren das die Rekonstruktion neurophysiologischer Prozesse und Mechanismen ermöglicht und mit dessen Hilfe neuronale Aktivität auf verschiedenen räumlichen und zeitlichen Skalen anhand biophysikalisch basierter Modelle vorhersagt werden kann.