dc.contributor.author
Boës, Paul
dc.contributor.author
Navascués, Miguel
dc.date.accessioned
2019-01-21T11:32:49Z
dc.date.available
2019-01-21T11:32:49Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23744
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1531
dc.description.abstract
Quantum measure theory (QMT) is a generalization of quantum theory where physical predictions are computed from a matrix known as the decoherence functional (DF). Previous works have noted that, in its original formulation, QMT exhibits a problem with composability, since the composition of two decoherence functionals is, in general, not a valid decoherence functional. This does not occur when the DFs in question happen to be positive semidefinite (a condition known as strong positivity). In this paper, we study the concept of composability of DFs and its consequences for QMT. Firstly, we show that the problem of composability is much deeper than originally envisaged, since, for any n, there exists a DF that can coexist with n−1 copies of itself, but not with n. Secondly, we prove that the set of strongly positive DFs cannot be enlarged while remaining closed under composition. Furthermore, any closed set of DFs containing all quantum DFs can only contain strongly positive DFs.
en
dc.format.extent
5 Seiten
dc.subject
Quantum formalism
en
dc.subject
Quantum foundations
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Composing decoherence functionals
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
022114
dcterms.bibliographicCitation.doi
10.1103/PhysRevA.95.022114
dcterms.bibliographicCitation.journaltitle
Physical Review A
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
95
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevA.95.022114
dcterms.rightsHolder.note
Copyright des Verlages
dcterms.rightsHolder.url
http://journals.aps.org/copyrightFAQ.html#post
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1050-2947 (Print)
dcterms.isPartOf.issn
1094-1622 (Online)