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Quantum measure theory (QMT) is a generalization of quantum theory where physical predictions are computed
from a matrix known as the decoherence functional (DF). Previous works have noted that, in its original formu-
lation, QMT exhibits a problem with composability, since the composition of two decoherence functionals is, in
general, not a valid decoherence functional. This does not occur when the DFs in question happen to be positive
semidefinite (a condition known as strong positivity). In this paper, we study the concept of composability of DFs
and its consequences for QMT. Firstly, we show that the problem of composability is much deeper than originally
envisaged, since, for any n, there exists a DF that can coexist with n − 1 copies of itself, but not with n. Secondly,
we prove that the set of strongly positive DFs cannot be enlarged while remaining closed under composition.
Furthermore, any closed set of DFs containing all quantum DFs can only contain strongly positive DFs.
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I. INTRODUCTION

Despite the continuous efforts of numerous scientists, rec-
onciling general relativity with quantum theory remains one of
the most important open problems in physics. The framework
of general relativity suggests that one promising approach to
such a unification will be by means of a reformulation of quan-
tum theory in terms of histories rather than states. Following
this idea, Hartle [1,2] and, independently, Sorkin [3–5], have
proposed a history-based framework, which can accommodate
both standard quantum mechanics as well as physical theories
beyond the quantum formalism. In this framework, dubbed
generalized quantum mechanics or quantum measure theory, a
fundamental role is played by the so-called decoherence func-
tional (DF). This object not only determines which questions
can be answered regarding the history of a closed quantum
system, but it also assigns probabilities to each possible
answer.

Previous works on quantum measure theory (QMT) have
discussed the interpretation of the DF [5] (still an active topic in
standard quantum theory; see [6]), proven the equivalence be-
tween the operator-based and the DF descriptions of quantum-
mechanical systems [7], and established a link with the op-
erational axiomatization of quantum theory [8]. In particular,
in [8] the authors argue that the set of nonlocality experiments
that are both consistent with QMT and closed under composi-
tion is equivalent to the almost quantum set of corrrelations [9].

Nonlocal correlations arise in the setting of multiple parties
with local access to a shared system, when the marginal
experimental statistics cannot be derived from a global local
hidden variable model. They were first studied, in the bipartite
setting, by Bell [10]. The almost quantum set is a set of
nonlocal correlations that, despite being strictly larger than the
quantum one, seems to satisfy all information-theoretic prin-
ciples originally conceived to single out quantum nonlocality
[11–16]. This feature, together with its unexpected role
in QMT, led the authors of [9] to conjecture that the
almost quantum set represents the set of correlations of
a yet-to-be-discovered consistent physical theory. At a
device-independent level, this theory would be more plausible

than quantum mechanics, for which a simple characterization
of nonlocality is still lacking.

There are, though, some caveats. Some of the above results
are derived under the assumption that, when viewed as matri-
ces, DFs must be positive semidefinite, a condition known as
strong positivity (SP). As noted in [17], the composition of two
DFs is not necessarily a DF. The set of strongly positive DFs
does not present such pathologies, and so the authors of [7,17]
suggest that the axiom of SP must be adopted on this basis.

In this paper we study the composability properties of DFs,
in an attempt to put this last suggestion on firmer ground.
By postulating a very natural rule for the composition of DFs
corresponding to independent systems, we will derive two
results on the composability of DFs. Firstly, we will argue that
the problem of the composability of DFs is much deeper than
originally noted, by showing that, for any n, there exists a
DF such that n copies of it can coexist simultaneously, but
not n + 1 copies. Secondly, we will prove that no theory
that is closed under composition and that extends the set of
DFs of quantum theory can contain DFs which are not SP.
Consequently, by [8], the set of nonlocal correlations of such
a theory must be contained in the almost quantum set.

The structure of this paper is as follows: In Sec. II, we will
introduce QMT and explain how it relates to the decoherence
histories interpretation of quantum theory. We will explain
how to model Bell experiments in this framework and review
the work of [8]. We will also formulate a product rule for the
composition of DFs describing independent physical systems.
In Sec. III, we will explore the consequences of the product
rule. We will present our conclusions in Sec. IV.

II. QUANTUM MEASURE THEORY

The basic idea behind quantum measure theory, or gen-
eralized quantum mechanics, for that matter, is to provide a
description of the world in terms of histories. A history is
a classical description of the system under consideration for
a given period of time, finite or infinite. If we are trying to
describe a system of N particles, then a history will be given by
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N classical trajectories. If we are working with a field theory,
then a history will correspond to the spatial configuration of
the field as a function of time. In either case, QMT tries to
address the challenges brought about by the experimentally
well-tested violation of Bell inequalities [18–20] by means
of weakening the notion of classical probability, as opposed
to weakening that of a classical history. QMT does so via an
object dubbed DF, which is best introduced by means of a
simple example.

Let two parties, call them Alice and Bob, conduct separate
experiments labeled by x ∈ {1, . . . ,m} and y ∈ {1, . . . ,m},
thus obtaining outcomes a ∈ {1, . . . ,d}, and b ∈ {1, . . . ,d}.
They observe that the statistics of their experiments are
governed by the list of probabilities {P (a,b|x,y)}x,y,a,b. For
simplicity, we will call this list behavior and just denote it by
P (a,b|x,y).

To model this experiment within the framework of DFs,
call ax (by) the property of the system revealed when Alice
(Bob) conducts the experiment x (y). We regard as a history
any list ω ≡ (a1, . . . ,an,b1, . . . ,bn) ∈ {1, . . . ,d}2n of all the
properties of the system. Call � the set of possible histories of
the system; and U, the set of all subsets of �. The DF, then, is
a function D : U × U → C, with the following properties:

(1) Hermiticity: D(A|B) = D(B|A)∗.
(2) Linearity: D(A ∪ B|C) = D(A|C) + D(B|C),

if A ∩ B = ∅.
(3) Positivity: D(A|A) � 0.
(4) Normalization: D(�|�) = 1.
(5) Weak decoherence: Let {Ak}k be a partition of �. If there

exists a feasible experiment to determine which Ak describes
the system, then

Re{D(Ak|Aj )} = P (Ak)δkj , (1)

where P (Ai) is the probability that the history of the system
belongs to Ai .

The delta appearing in Eq. (4) is required for consistency.
Indeed, one would imagine that, if there existed an experiment
capable of distinguishing between the elements of the partition
{Ai}i , then, for k 	= j , there should be an experiment distin-
guishing the elements of the coarse-grained partition {Ai :
i 	= j,k} ∪ {Ak ∪ Aj }, with D(Ak ∪ Aj |Ak ∪ Aj ) = P (Ak ∪
Aj ) = P (Ak) + P (Aj ) = D(Ak|Ak) + D(Aj |Aj ). This last
condition and the axioms of linearity and hermiticity imply
that Re{D(Ak|Aj )} = 0.

The difference between QMT and generalized quantum
mechanics is that the latter also posits the converse of the
decoherence axiom. Namely, that, for any partition {Ai}i of �

satisfying Re{D(Ak|Aj )} = 0 for k 	= j , there exists a feasible
experiment to determine which partition the system is in, and
the probabilities of each outcome are given by Eq. (4) [21].
In [21] it is observed that, in many situations of physical
interest, not only the real part of D(Ak|Aj ) vanishes, but
also the imaginary part. This has led some authors [7,8,21]
to postulate the stronger axiom:

(5) Strong decoherence. Let {Ak}k be a partition of �.
If there exists a feasible experiment to determine which Ak

describes the system, then

D(Ak|Aj ) = P (Ak)δkj , (2)

where P (Ai) is the probability that the history of the system
belongs to Ai .

Going back to the above example one can, for fixed
x,y, consider the partition {Ax,y,a,b}a,b of U given by the
sets Ax,y,a,b = {ω : ω(ax) = a,ω(by) = b}. Which element
of this partition the history of our system falls into is a
question that can be answered just by forcing Alice and
Bob to conduct measurements x,y. Hence the elements
of the partition must decohere, i.e., D(Ax,y,a,b|Ax,y,a′,b′ ) =
P (a,b|x,y)δa,a′δb,b′ (assuming strong decoherence). Similarly,
the act of Alice conducting an experiment x and asking Bob
to conduct experiment y depending on her outcome a (and
vice versa) determines further decohering partitions. Note that,
given P (a,b|x,y), this reasoning does not allow us to fill all the
entries of the DF, but to establish affine relations between them.

If we wanted to model this experiment within standard
quantum mechanics, we would need to assume that there
exists a Hilbert space H, a normalized quantum state ρ ∈
B(H), and projector operators E(x,a),F (y,b) ∈ B(H) sat-
isfying

∑
a E(x,a) = ∑

b F (y,b) = I, [E(x,a),F (y,b)] = 0
such that P (a,b|x,y) = tr[ρE(x,a)F (b,y)]. Then, a possible
quantum DF to describe this system follows from linearity
from the following prescription:

D[(a1,...,an,b1,...,bn)|(a′
1,...,a

′
n,b

′
1,...,b

′
n)]

= tr{E(�a)F (�b)ρF (�b′)†E(�a′)†}, (3)

where E(�a) ≡ ∏n
x=1 E(x,ak), F (�b) ≡ ∏n

y=1 F (y,bk).
Sometimes it is more convenient to represent the de-

coherence functional as an operator. Given the set of all
histories �, one does so by defining a Hilbert space by
assigning to each a ∈ � an element |a〉 of an orthonormal
basis {|b〉 : b ∈ �}. Next, to any A ∈ U we associate the vector
|A〉 = ∑

a∈A |a〉. Finally, for any DF, we can build the matrix
D = ∑

a,b∈� D({a}|{b})|a〉〈b|. By the axiom of linearity we
then have that D(A|B) = 〈A|D|B〉.

In this matrix representation, we can thus drop linearity and
the remaining axioms can be expressed as

(1) Hermiticity: D = D†.
(2) Positivity: 〈V |D|V 〉 � 0, for all vectors |V 〉 ∈ {0,1}|�|.
(3) Normalization: 〈�|D|�〉 = 1.
(4) Weak (strong) decoherence: Let {Ak}k be a partition of

�. If there exists a feasible experiment to determine which Ak

describes the system, then

Re{〈Aj |D|Ak〉} (〈Aj |D|Ak〉) = P (Ak)δkj , (4)

where P (Ai) is the probability that the history of the system
belongs to Ai .

A DF is strongly positive if its matrix representation is pos-
itive semidefinite, i.e., if all its eigenvalues are non-negative.
As illustrated in the example (3), all quantum DFs are strongly
positive [17]. However, the set of all behaviors P (a,b|x,y)
admitting a strongly positive DF is not the quantum set, but
the set of almost quantum correlations [8], defined in [9].

Now, consider two physical systems with history sets
�1,�2 and decoherence functionals D1 : U1 × U1 → C, D2 :
U2 × U2 → C. Since the decoherence functional is the basic
object of QMT, there should exist a prescription that assigns a
joint DF D12 : U12 × U12 → C to the joint system 1–2. Here
U12 denotes the power set of the history space �12 = �1 × �2.
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Taking inspiration from the quantum case, we suggest the
following composition rule, assumed implicitly in [17]:

Definition 1. Product rule.
Let D1,D2 be DFs describing independent systems, with

history sets �1,�2. Then the joint DF D12 : U12 × U12 → C
describing systems 1 and 2 is completely determined by
linearity and the relations:

D12(A1 × A2|B1 × B2) = D1(A1|B1)D2(A2|B2), (5)

for all A1,B1 ∈ U1,A2,B2 ∈ U2.
Note that, in operator representation, the product rule

reduces to D12 = D1 ⊗ D2.
As noted by Diósi, under the product rule the composition

of any two DFs violating strong decoherence results in a
matrix that violates the axiom of weak decoherence [22]. Thus,
unless the system under study is literally singular, we can
safely assume that measurable partitions of � satisfy strong
decoherence. Diósi’s composition argument hence settled
the controversy on whether the axiom of weak or strong
decoherence was to be preferred.

In [7,17], the authors further consider the possibility that
the composition of two DFs via the product rule gives
rise to a matrix violating the positivity axiom. That such
pathological examples do exist follows from the recent results
of Henson [23], which imply that there exists a behavior
P (a,b|x,y) (specifically the Popescu-Rohrlich box [11]), such
that one copy admits a DF but not two independent copies.

However, as pointed out in [7,8,17], strongly positive DFs
do not exhibit this behavior. Indeed, for D1,D2 � 0, it follows
straightforwardly that D12 = D1 ⊗ D2 � 0. In other words:
the set S of strongly positive DFs is closed under composition.

A set S of DFs is closed under composition if and only if,
for any D,D′ ∈ S, D ⊗ D′ ∈ S. Intuitively, any closed system
described by such a set can in principle coexist with any other
closed systems subject to the same constraint. This is very
desirable from a physical point of view, as it allows us to model
a closed system independently of the rest of the universe.

By adopting the product rule and requiring closure under
composition, the authors of [7,8,17] motivate the axiom of
strong positivity. However, this is only true to some extent,
because S is not the only closed set within the set of DFs and
it is not clear whether all other closed sets are subsets of S.
For all we know, we could weaken the SP condition and yet
end up with a closed set of DFs, possibly describing nonlocal
correlations beyond the almost quantum set.

Moreover, it may be argued that the requirement of closure
under composition is unnecessarily strong, given that the
universe may just hold a finite number of independent systems.
In the following section both of these questions are addressed.

III. CONSEQUENCES OF THE PRODUCT RULE

Is requiring that the set of admissible DFs of a physical
theory is closed under composition an unnecessarily strong
assumption? One possible argument in favor of this require-
ment follows from the observation in [23] that there exists a
DF D such that D⊗2 is not a DF. Hence, in order to postulate
that a given system is described by D, we would need to
be certain that D does not describe any other system in the
whole universe. By admitting the feasibility of D, we would be

thus renouncing to the possibility of modeling closed systems
independently of the rest of the world.

This argument, however, relies on the intuition that, for
cosmic scales, 2 is a very small number. Thus, an argument
against the requirement of closure may counter that such a
reasoning cannot hold for astronomic numbers of copies: what
if a very high number of copies of D, say 10200—many more
than what the Universe can actually accommodate—were
compatible? Would it be then reasonable to conclude that
D cannot be realized just because 10200 + 1 copies cannot
theoretically coexist? The next result shows that the above is
a valid concern.

Lemma 2. Let n ∈ N. Then, there exists a decoherence
functional D such that D⊗n is a decoherence functional, but
D⊗n+1 is not.

Proof. Consider the 4 × 4 matrix

D ≡ 1
2εA ⊗ |0〉〈0| + 1

2 (I − εA) ⊗ |1〉〈1|, (6)

with

A =
(

1 λ

λ 1

)
, (7)

for some λ > 1.
As long as ε � 1

1+λ
, this can be interpreted as a weakly

positive decoherence functional for two noncompatible mea-
surements with dichotomic outcomes. Indeed, denote each
history by a vector (a,b) ∈ {0,1}2 and define D(a,b|a′,b′) ≡
〈a|〈b|D|a′〉|b′〉. Then it can be verified that the partitions
{Aa}a and {Bb}b, with Aa = {(a,b) : b = 0,1}, Bb = {(a,b) :
a = 0,1} strongly decohere. Moreover, 〈C|D|C〉 � 0 for any
subset C of � = {(a,b) : a,b = 0,1}.

Now, consider the element of U1,....,n+1 given by the
vector |V 〉 = |0,0〉⊗n|0〉|1〉 + |1,0〉⊗n|1〉|1〉. One can verify
that 〈V |D⊗n+1|V 〉 = 1

2n ε
n[1 − ε(1 + λn+1)]. Hence, for ε >

1/(λn+1 + 1), 〈V |D⊗n+1|V 〉 < 0, and so D⊗n+1 is not a DF.
In particular, taking ε = 1/(λn+1/2 + 1) we make sure that the
positivity axiom is violated.

It just rests to see that λ can be chosen such that
D⊗n is a decoherence functional. Note that, due to the
block-diagonal structure of D, it is enough to show that
〈W |A⊗n1 ⊗ B⊗n2 |W 〉 � 0 for any |W 〉 ∈ {0,1}2n

, n1+n2=n,
with B = I − εA.

Define |W̃ 〉 = |W 〉/‖|W 〉‖. Then,

〈W̃ |A⊗n1 ⊗ B⊗n2 |W̃ 〉
= 〈W̃ |A⊗n1 ⊗ I|W̃ 〉 + 〈W̃ |A⊗n1 ⊗ (B⊗n2 − I)|W̃ 〉
� 1 − ‖A⊗n1 ⊗ (B⊗n2 − I)‖∞

= 1 − (1 + λ)n1

{(
1 − λ + 1

λn+1/2 + 1

)n1

− 1

}
. (8)

Here the inequality 〈w̃|A⊗n1 ⊗ I|w̃〉 � 1 follows from the
fact that A = I + Ã, with all the entries of Ã, |W̃ 〉 being non-
negative.

We claim that, for any n and λ sufficiently high, the
right-hand side of Eq. (8) is arbitrarily close to 1 for all n1 +
n2 = n, n2 � 1. To see this, one just needs to take the limit
λ → ∞ in that expression. Hence 〈W̃ |A⊗n1 ⊗ B⊗n2 |W̃ 〉 � 0
for all n1 + n2 = n (the case n2 = 0 is trivial) and so D⊗n

is a DF. �
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In the light of this result, whether the requirement of closure
under composition is unnecessarily strong or not is a question
that cannot be settled via arguments involving small numbers
of independent systems.

Suppose now that, despite the previous lemma, we adopt as
a physical principle that DFs must be composable arbitrarily
many times. This would imply that the set S of DFs deemed
physical must be closed under the product rule. That is,
if D1,D2 ∈ S, then D1 ⊗ D2 ∈ S. In order to meet this
requirement, it has been proposed [7,8] that S should be
contained in the set S of strongly positive DFs.

In the following we will show that, under the product rule,
S is maximal, i.e., it cannot be enlarged without losing the
property of being closed under composition. Actually, we
will prove an even stronger result: namely, that any set of
DFs containing the quantum set cannot be both closed under
composition and have a non-SP element. Any theory aiming
at reproducing quantum predictions for a certain family of
experiments (described below) can just thus contain SP DFs.

Lemma 3. Let D be a decoherence functional violating
strong positivity, i.e., there exists |v〉 with 〈v|D|v〉 < 0. Then,
there exists a quantum decoherence functional D′ describing
an experience with two measurement settings such that
D ⊗ D′ is not a decoherence functional.

Proof. In order to prove the theorem, we need to define the
following family of DFs.

Definition 4. Let |v〉 ∈ Cm be a normalized vector, i.e.,
〈v|v〉 = 1. Then, D|v〉 ∈ B(Cm ⊗ C2) will denote the quantum
decoherence functional given by

D|v〉(a,b|a′,b′) ≡ 〈v|Ea′Fb′FbEa|v〉, (9)

where Ea = |a〉〈a|, for a = 0, . . . ,m − 1 are one-rank projec-
tors onto the computational basis ofCm, and F0,F1 correspond
to the projectors F0 = 1

m

∑
j,k |j 〉〈k|, F1 = Im − F0.

By straightforward calculation, one can verify that

D|v〉 = 1

m
|v〉〈v| ⊗ |0〉〈0| +

(
m−1∑
a=0

|〈v|a〉|2|a〉〈a| − 1

m
|v〉〈v|

)

⊗ |1〉〈1|. (10)

Defining |w〉 ≡ ∑m−1
a=0 |a〉A|a,0〉B , it hence follows that

trB{|w〉〈w|AB(IA ⊗ D|v〉)} = 1

m
|v∗〉〈v∗|. (11)

Note that, expressed in the computational basis, |w〉 has just
zeros and ones. Therefore it can be identified with a subset of
the joint set of histories �AB .

Now we are ready to prove the maximality result: let D be
a weakly positive DF, with a set of histories � with cardinality
m and such that 〈v|D|v〉 < 0, for some normalized vector
|v〉 ∈ Cm. Then,

〈w|D ⊗ Dv∗ |w〉 = 1

m
〈v|D|v〉 < 0. (12)

The positivity axiom is thus violated by the composition of D

with Dv∗ .
The last lemma gives further support to the adoption of

strong positivity as an axiom for the theory of DFs. However,

it does not close the matter completely: that S is a maximal set
closed under composition does not necessarily mean that it is
the only maximal set. In principle, there could exist other sets
of DFs closed under composition containing elements with
negative eigenvalues. Each of these other maximal sets would
give rise to a consistent theory of DFs (although unable, in the
light of Lemma 3, to reproduce all the predictions of quantum
mechanics).

The main obstacle in showing the existence of other
maximal sets is the difficulty of identifying s × s matrices
D 	� 0 all of whose n-tensor products S = D⊗n satisfy

〈u|S|u〉 � 0, (13)

for all vectors |u〉 ∈ {0,1}sn

. An obvious choice is taking D to
have only non-negative entries. Actually, the setP of Hermitian
matrices with non-negative coefficients can be shown to be
maximal under composition, in the sense that they and their
tensor products satisfy relation (13), and for any s × s matrix
M 	∈ P, there exists a 2 × 2 matrix D in P such that M ⊗ D

violates (13). As we will next see, though, this choice does not
lead to very interesting DFs.

Consider a set � of histories labeled by the values of n

properties, i.e., each history is of the form a ≡ (a1,a2, . . . ,an).
Now let D be the matrix representation of a DF with non-
negative entries, and suppose that there exists a nonzero off-
diagonal element D(b|c) 	= 0, with b 	= c. Since b 	= c, let
k be any index such that bk 	= ck and consider the partition
of � given by the sets Aa ≡ {(a1, . . . ,ak−1,a,ak+1, . . . ,an) :
a1, . . . ,ak−1,ak+1, . . . ,an}. Then, the fact that all entries of D

are non-negative implies that D(Abk
|Ack

) 	= 0. That is, this
partition does not decohere, and consequently there exists no
physical procedure to determine the value of property ak . That
we cannot measure one of the properties which we used to
define our set of histories is clearly nonsensical (or, at the
very least, extremely undesirable), so we must conclude that
D must be a diagonal matrix. Hence D must be diagonal or
classical and thus strongly positive.

IV. CONCLUSION

In this paper we have proposed a natural rule for the
composition of DFs and studied its consequences within
the axiomatization of QMT. We have shown that this extra
rule predicts the existence of families of DFs which, despite
being n-fold compatible, cannot coexist with n + 1 copies of
themselves. Also, we have proven that, under this composition
law, the set S of strongly positive DFs is maximal, in the sense
that it cannot be enlarged without losing the property of being
closed under composition.

It remains to find out whetherS is actually the only maximal
set, or, on the contrary, there exist other sets not contained in S
but nonetheless closed under composition. Alternatively, one
could look for a new composition rule for which S is not max-
imal. We suspect that both problems are similarly involved.
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