The 7.6 billion people living on our planet face a number of pressing issues that include climate change, food and energy security, natural resource management, human health, clean water management, sustainable use of the oceans, building resilient infrastructure, and responsible production and consumption (UNSDGs, 2015). Many of these issues involve a better understanding of ancient, modern, and future process interactions at and below the Earth's surface. Particulate transport processes and fluxes are the key physical measures, and sedimentary successions form the critical archives, which permit investigations into the response of the planet's interconnected systems to climate change, and the triggers, magnitudes, and frequency of natural hazards. Advances in quantification and forecasting of particulate and pollutant transport across the land, the continental shelf, and in the deep-ocean are urgently required to improve societal resilience to these planetary changes and hazards. Given the lack of long-term (>100s of years) instrumental records and uncertainties in future Earth system behavior, analysis of both recent and ancient sedimentary archives is required to tackle these challenges. A number of questions arise when faced with attempting such reconstructions from depositional sequences. For instance, can we confidently attribute processes to the resultant sedimentary deposits? How can we establish a precise chronology for past events? How did past events respond to environmental controls? How complete are sedimentary sequences? What post-depositional processes may complicate their interpretation? [...]