Globally the number of climate-related disasters and the associated loss figures are on the rise. The changing climate as well as the increasing exposure in terms of people and assets could induce unprecedented damage levels. Damage functions constitute the crucial link between hazard, exposure and the resulting damage. As such, they provide vulnerability and damage-cost information, which are essential for disaster risk reduction and for the evaluation of climate-change adaptation options. With this purpose in mind, the overarching goal of the work at hand is to contribute to the fundamental understanding of damage functions and to provide systematic and versatile damage assessment. Only few damage functions are available for a regional damage assessment. Data scarcity, for example, is a major obstacle for the development of storm damage functions. For the work at hand, newly available data on German storm loss permit a fresh look at the wind--loss relation. Based on these data, a novel storm damage function is developed and compared against existing approaches. The results show that the wind--loss relation is well described by power-law curves with exponents that are considerably higher than previously expected. While the steepness of the curves at extreme wind speeds is comparable to other damage functions, the novel damage function is capable of predicting damages over a wider range of wind speeds. It is found that the uncertainty of the damage estimates is mainly driven by uncertainty from the wind measurement and approximates to a log-normal uncertainty distribution. Exploring further damage functions beyond the domain of storm damage, analogous approaches are identified for coastal flooding and, schematically, for heat-related mortality. Together, these are formulated as a unified damage function. With its wide applicability the unified approach forms the basis for undertaking a fundamental analysis of uncertainty. Here, in contrast to prior studies, the work at hand puts emphasis on the propagation of uncertainty from the microscale to the macroscale level. The results show that the relevance of intrinsic uncertainties on the microscale level is carried over to the aggregate macroscale level. However, extrinsic sources of uncertainty, such as the aforementioned measurement error of wind speed, dominate overall. In summary, this work delivers multiple contributions to the understanding of damage functions. The novel storm damage function provides improved loss estimates and will help to assess the significance of changes in storm climate. The comparison brings together the rather fragmented research on storm damage functions and sheds light on their performance. Furthermore, the findings suggest a rebuttal of the cubic power-law assumption for macroscale storm loss. Finally, the unified approach for damage estimation facilitates knowledge transfer between various climate-related hazards. As one example, the findings on the relevance of uncertainty sources have broad applicability and may guide future research to reduce the uncertainty of damage estimation. With its interdisciplinary approach, this work has strong relevance to practitioners in the various domains of natural hazards research and in the atmospheric sciences.
Im globalen Maßstab sind sowohl die Anzahl als auch die Schäden klimabedingter Naturkatastrophen im Anstieg begriffen. Durch das Zusammenspiel von Klimawandel und zunehmender Exposition von Menschen und Vermögen ist von einem weiterhin zunehmenden Schadensniveau auszugehen. Schadensfunktionen beschreiben die Schnittstelle zwischen den verursachten Schäden, der Exposition, sowie der zugrunde liegenden Naturgefahr. Sie ermöglichen die Abschätzung der Gefährdung sowie des potentiellen Schadenaufwands und liefern somit essentielle Informationen für den Umgang mit künftigen Katastrophenschäden und die Evaluierung von möglichen Anpassungsmaßnahmen. Es ist daher das vorrangige Ziel dieser Arbeit, das grundlegende Verständnis von Schadensfunktionen zu stärken, um eine systematische und übergreifende Schadensabschätzung zu ermöglichen. Schadensfunktionen zur Abschätzung regionaler Schäden sind oft nur eingeschränkt verfügbar, da mangelnde Datenverfügbarkeit ein wesentliches Hindernis für deren Entwicklung und Kalibrierung darstellt. In der vorliegenden Arbeit erlauben neu verfügbare und hoch aufgelöste Sturmschadensdaten einen frischen Blick auf die Relation zwischen Windstärke und Sturmschaden. Auf Grundlage dieser Daten, wird eine neuartige Sturmschadensfunktion entwickelt und mit bestehenden Schadensfunktionen verglichen. Es zeigt sich, dass die Relation des Schadens zum verursachenden Wind einem einfachen Potenzgesetz folgt, dessen Exponent jedoch einen signifikant höheren Wert annimmt als eingangs erwartet. Während der Verlauf der Kurve bei extremen Windgeschwindigkeiten bestehenden Schadensfunktionen ähnelt, lässt die neu entwickelte Schadenfunktion die Abschätzung potentieller Schäden über einen deutlich breiteren Windbereich zu. Bezüglich beobachteter Schäden zeigt sich, dass die Schwankungen der Schadenswerte im Wesentlichen durch Unsicherheit in der Windermittlung begründet sind. Diese Schwankungen lassen sich in guter Näherung durch eine Lognormalverteilung beschreiben. Über das Spektrum von Windschäden hinaus werden analoge Ansätze zur Abschätzung von Schäden durch Küstenfluten sowie, auf schematischer Ebene, zur Modellierung von hitzebedingten Todesfällen identifiziert. Diese Ansätze lassen sich in eine einheitliche mathematische Form bringen und dienen als Basis für die Analyse des Einflusses verschiedener Unsicherheitsfaktoren auf die Schadenshöhe. Hierbei liegt der Schwerpunkt der Unsicherheitsanalyse, im Gegensatz zu vorhergehenden Studien, auf der Transformation von Unsicherheit zwischen der Mikro- und der Makroskala. Die Ergebnisse zeigen, dass die Relevanz mikroskaliger Unsicherheiten auf der Makroebene erhalten bleibt. Schlussendlich dominieren jedoch extrinsische Unsicherheitsquellen, wie die bereits erwähnte Unsicherheit aus der Windermittlung. Insgesamt liefert die vorliegende Arbeit eine Vielfalt von Erkenntnissen für das Verständnis von Schadensfunktionen. So bietet die neuartige Sturmschadensfunktion eine Verbesserung der Schadensprognose und ermöglicht eine genauere Beurteilung der negativen Auswirkungen des Klimawandels. In einem umfassenden Vergleich werden zudem erstmals die bestehenden Ansätze zusammengebracht und quantitativ verglichen. Darüber hinaus sprechen die Ergebnisse für die Widerlegung der Hypothese einer kubischen Wind-Schaden-Relation. Es ist im Weiteren davon auszugehen, dass die Vereinheitlichung klimarelevanter Schadensfunktionen den Wissenstransfer zwischen den verschiedenen Feldern der Naturgefahrenforschung erleichtert. So bildet z.B. die Unsicherheitsanalyse eine Grundlage um künftige Arbeiten zur Reduzierung von Unsicherheiten auf wesentliche Unsicherheitsquellen zu fokussieren. Mit ihrem interdisziplinären Ansatz ist die vorliegende Arbeit von hoher Relevanz für die Naturgefahrenforschung sowie die Atmosphärenwissenschaften.