Background: Protein concentration and quality in cat food can vary considerably, and the impact on feline urine composition and nutrient supply is of high practical relevance. In the present study, 6 canned diets with varying protein concentrations and qualities were fed to 10 healthy adult cats. Protein quality in the diet differed depending on the amount of collagen-rich ingredients. Hydroxyproline concentrations were 2.56–4.45 g/kg dry matter in the high quality and 3.76–9.44 g/kg dry matter in the low quality diets. Protein levels were 36.2, 43.3 and 54.9% in the high quality and 36.7, 45.0 and 56.1% in the low quality groups. Each diet was fed for 6 weeks, using a randomized cross-over design. In the last 2 weeks of each feeding period, urine and faeces of the cats were collected.
Results: Renal calcium (Ca), oxalate (Ox) and citrate excretion were unaffected by the dietary protein concentration, possibly mediated by a high urine volume (24.2–34.2 ml/kg bodyweight (BW)/day) in all groups. However, renal Ox excretion was lower when the high quality diets were fed (P = 0.013). Urinary relative supersaturation (RSS) with calcium oxalate (CaOx) was low in general, but reduced in the high quality groups (P = 0.031). Urinary RSS values for magnesium ammonium phosphate (MAP) were high (2.64–5.00) among all groups. Apparent digestibility of crude protein and most minerals was unaffected by the different diets. Feed intake was higher in the low quality groups (P = 0.026), but BW of the cats did not differ depending on dietary protein quality. BW of the cats increased with increasing dietary protein concentrations (P = 0.003).
Conclusion: In conclusion, a high protein canned diet might not be a specific risk factor for CaOx urolith formation in cats. In contrast, all diets resulted in high RSS MAP values, which might be critical concerning MAP crystallization. Protein quality had a minor, but significant impact on urine composition, necessitating further research on this subject. A lower energy supply when feeding a low protein quality can be assumed. Changes in BW were only small and require a careful interpretation.