dc.contributor.author
Becker, Katinka
dc.contributor.author
Klarner, Hannes
dc.contributor.author
Nowicka, Melania
dc.contributor.author
Siebert, Heike
dc.date.accessioned
2018-07-11T14:58:21Z
dc.date.available
2018-07-11T14:58:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22450
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-259
dc.description.abstract
Cell classifier circuits are synthetic biological circuits capable of distinguishing between different cell states depending on specific cellular markers and engendering a state-specific response. An example are classifiers for cancer cells that recognize whether a cell is healthy or diseased based on its miRNA fingerprint and trigger cell apoptosis in the latter case. Binarization of continuous miRNA expression levels allows to formalize a classifier as a Boolean function whose output codes for the cell condition. In this framework, the classifier design problem consists of finding a Boolean function capable of reproducing correct labelings of miRNA profiles. The specifications of such a function can then be used as a blueprint for constructing a corresponding circuit in the lab. To find an optimal classifier both in terms of performance and reliability, however, accuracy, design simplicity and constraints derived from availability of molcular building blocks for the classifiers all need to be taken into account. These complexities translate to computational difficulties, so currently available methods explore only part of the design space and consequently are only capable of calculating locally optimal designs. We present a computational approach for finding globally optimal classifier circuits based on binarized miRNA datasets using Answer Set Programming for efficient scanning of the entire search space. Additionally, the method is capable of computing all optimal solutions, allowing for comparison between optimal classifier designs and identification of key features. Several case studies illustrate the applicability of the approach and highlight the quality of results in comparison with a state of the art method. The method is fully implemented and a comprehensive performance analysis demonstrates its reliability and scalability.
en
dc.format.extent
13 Seiten
de
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
de
dc.subject
Boolean modeling
en
dc.subject
Answer Set Programming
en
dc.subject
synthetic biology
en
dc.subject
miRNA profiles
en
dc.subject
breast cancer
en
dc.subject
cell classifier
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
de
dc.title
Designing miRNA-Based Synthetic Cell Classifier Circuits Using Answer Set Programming
de
dc.type
Wissenschaftlicher Artikel
de
dcterms.bibliographicCitation.articlenumber
17
dcterms.bibliographicCitation.doi
10.3389/fbioe.2018.00070
dcterms.bibliographicCitation.journaltitle
Frontiers in Bioengineering and Biotechnology
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.3389/fbioe.2018.00070
de
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik / Diskrete Biomathematik
de
refubium.funding
Institutional Participation
refubium.funding.id
Frontiers
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access