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Cell classifier circuits are synthetic biological circuits capable of distinguishing between

different cell states depending on specific cellular markers and engendering a

state-specific response. An example are classifiers for cancer cells that recognize

whether a cell is healthy or diseased based on its miRNA fingerprint and trigger cell

apoptosis in the latter case. Binarization of continuous miRNA expression levels allows

to formalize a classifier as a Boolean function whose output codes for the cell condition.

In this framework, the classifier design problem consists of finding a Boolean function

capable of reproducing correct labelings of miRNA profiles. The specifications of such a

function can then be used as a blueprint for constructing a corresponding circuit in the

lab. To find an optimal classifier both in terms of performance and reliability, however,

accuracy, design simplicity and constraints derived from availability of molcular building

blocks for the classifiers all need to be taken into account. These complexities translate to

computational difficulties, so currently available methods explore only part of the design

space and consequently are only capable of calculating locally optimal designs. We

present a computational approach for finding globally optimal classifier circuits based

on binarized miRNA datasets using Answer Set Programming for efficient scanning of

the entire search space. Additionally, the method is capable of computing all optimal

solutions, allowing for comparison between optimal classifier designs and identification of

key features. Several case studies illustrate the applicability of the approach and highlight

the quality of results in comparison with a state of the art method. The method is fully

implemented and a comprehensive performance analysis demonstrates its reliability and

scalability.

Keywords: Boolean modeling, Answer Set Programming, synthetic biology, miRNA profiles, cell classifier, breast

cancer

1. INTRODUCTION

With the ongoing development of sophisticated engineering methods for biological components,
the benefits of synthetic biology for medical applications are discussed more and more (Kis et al.,
2015). Engineered gene circuits show promise in diagnostics and treatment (Kis et al., 2015;
Slomovic et al., 2015). An emerging approach combining both tasks is targeting cells selectively
with so-called classifier circuits. A cell classifier circuit is a synthetic biological circuit which may
be delivered to a living cell on a plasmid or viral vector and then is capable of recognizing the
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cell state (e.g., healthy or diseased) based on its molecular
fingerprint (e.g., using miRNA profiles). Depending on the
classification result a controlled production of a desired output
may be triggered and lead to cell apoptosis. In case of diseases
such as cancer, where the heterogeneity and diversity of cells
poses one of the major challenges, cell classifiers may provide a
future avenue to more effective and non-toxic treatments based
on personalized miRNA profiles (Heng et al., 2011; Leva and
Croce, 2013; Mohammadi et al., 2017).

Rational design of synthetic biological systems is a complex
task. Assembly of an in silico designed circuit in the laboratory
is costly and time-consuming. Here, mathematical modeling
is highly valuable for the design process because it allows
the formalization of demands and the computation of optimal
solutions within the design space (Teo et al., 2015; Mohammadi
et al., 2017). Since many of the biological building blocks
for synthetic circuits, and in particular classifiers, are geared
toward steep response profiles to ensure robust performance
and assembled as logic gates (Singh, 2014; Siuti et al., 2015),
Boolean modeling approaches are well-suited for this task.
However, the logical formalization often remains implicit and the
computational capabilities within the Boolean framework remain
largely unused (Xie et al., 2011; Moon et al., 2012; Mohammadi
et al., 2017).

In this article, we show the potential of formal methods,
in particular Answer Set Programming (ASP), in the context
of classifier design. Although the underlying ideas are broadly
applicable, we tailor our implementation to the task of processing
miRNA profiles to distinguish between healthy and cancerous
cells. In this context, a classifier is represented by a Boolean
function that, given as input a discretized miRNA profile, outputs
the binary cell state encoding healthy or diseased. A similar
problem is considered in work by Mohammadi and colleagues
(Xie et al., 2011; Mohammadi et al., 2017). They developed a
transcriptional/post-transcriptional synthetic regulatory circuit
capable of performing a desired task. In addition, they formulate
constraints for the classifier design that need to be satisfied so that
the classifiers become biologically viable. Constraint satisfaction
complicates the search for optimal designs significantly, so that
approaches usually employ heuristics for exploring the design
space (Mohammadi et al., 2017). However, heuristic methods
do not guarantee that globally optimal solutions are found and
so there is no guarantee that much better solutions are not
overlooked.

Exploiting the potential of ASP as a powerful solver for
constraint satisfaction problems, we present an approach that
allows to compute globally optimal classifiers that satisfy all
given constraints. In the hierarchy of optimization criteria, the
strongest emphasis is placed on classifier accuracy in terms of
classification errors followed by circuit simplicity in terms of
number of inputs and utilized gates. The computational power
of the approach allows us to calculate all optimal solutions that
can be further distinguished using scores relating the discrete
results to the continuous data. Not least, comparison of those
optimal solutions can uncover key classifier features as well as
highlight variability in design. After describing the formalization
and strategies for solving the problems, we present our results

for five breast cancer case studies and compare them with the
output of the heuristic approach of Mohammadi et al. (2017). To
assess general applicability, we present a performance analysis of
our method based on synthetic data. In the discussion we address
issues beyond the Boolean abstraction that can be tackled in order
to evaluate and increase the quality of solutions.

2. METHODS

Similar to electronic circuits, synthetic gene circuits are designed
in terms of logic gates (Singh, 2014; Siuti et al., 2015) within a
Boolean framework. Typically they consist of disjunctions (OR
gate), conjunctions (AND gate) and negations (NOT gate) of
input signals that are interpreted as Boolean variables. A classifier
is then a Boolean function that yields for the different input
combinations an output signifying the classification (e.g., healthy
or diseased). An example of a simplified classifier design process
is given in Figure 1.

Here, we focus on miRNA-based cell classifiers for cancer
datasets where input signals are miRNA expression levels that
are binarized into two qualitative levels: High (1) and Low (0)
expression, that is, above and below a given threshold value. The
aim of the classifier is to determine whether a given sample is
healthy or cancerous by processing the corresponding miRNA
fingerprint of the sample. This setup is similar to a supervised
machine learning problem because each sample is labeled by
the cell state. Mathematically, the challenge is to construct a
Boolean function that distinguishes the two types of samples.
The function should return True for inputs that correspond
to cancerous samples and False otherwise. The dataset is not
required to and usually does not cover all possible inputs, that
is, all miRNA that may occur in the cell, and all combinatorically
possible input combinations. Whatever the classifier returns for
unseen combinations of miRNAs is irrelevant, although it may
naturally be used to predict the states of new samples.

If the data is consistent, that is, the same profile has not
been observed to characterize both a healthy and a diseased cell,
and does not cover all input combinations then there will be
more than one classifier. In practice, it is then interesting to
choose from the set of mathematically feasible classifiers those
that are biologically feasible while minimizing a cost function
that represents the actual cost of assembling the classifier in a
laboratory.

2.1. The Programming Environment
To implement our approach to classifier design we made
use of Answer Set Programming (Lifschitz, 2008), a form
of declarative programming. Declarative programming, in
contrast to imperative programming, allows to define only a
computational logic of the program without explicitly specifying
a strategy to solve the problem. In case of ASP a detailed problem
description including the data, the constraints on a classifier
and the optimization strategy is encoded as logical rules. Those
logical rules, called the ASP program, are then instantiated by an
ASP grounder and solved by an ASP solver. Various systems for
grounding and solving are available. For our calculations we use
the grounder gringo and the solver clasp, both part of the Potsdam
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FIGURE 1 | Cell classifier circuits are synthetic logic circuits capable of sensing endogenous molecular signals (inputs) in a living cell, classifying them as type-specific

signals and triggering a desired response (output) based on the classification result (Xie et al., 2011; Mohammadi et al., 2017). (A) The inputs may be specified as

miRNA expression profiles identifying the cell state as healthy or diseased. (B) Binarization of continuous miRNA levels, characterizing them as high or low, allows to

combine them into logic gates and define a Boolean function which allows to classify the cell state. (C) The input signals are processed by a synthetic regulatory

network capable of triggering the response, which may be a controlled production of a desired RNA or protein output leading to a cell apoptosis.

Answer Set Solving Collection Potassco (see Data and Software
Availability). For more information about the ASP encoding see
the Supplementary Material.

The full approach is implemented in a set of Python
scripts, available on GitHub with a detailed description and
a manual. The script classifier.py allows to convert the input
data into the ASP program, call the Potassco grounder and
solver and create images of the classifiers as directed graphs.
Our approach comprises also an evaluation of biochemical
capabilities of a designed circuit to predict the efficacy of response
triggering (scores.py). To estimate the real-world performance we
implemented classification scores proposed byMohammadi et al.
(2017). In the following we describe the setting and all steps in the
proposed workflow. A schematic view of our approach is given in
Figure 2.

2.2. The Data: miRNA Expression Profiles
For our purposes, a dataset is a table of binarized miRNA
expression profiles for different samples. The first column
referenced as ID contains numbers uniquely identifying the
samples. The second column referenced as Annots states for
each sample its annotation and indicates whether the sample is
cancerous or not. Here, samples are labeled by a binary variable,
that is, positive samples are annotated as 1 and negative samples
as 0. The next columns represent the binarized miRNA levels in
each sample. Every column is labeled by a letter g followed by
an integer number that uniquely identifies a miRNA. Therefore,
each row includes a miRNA expression profile, that is, a set of
binarized miRNA levels, corresponding to the samples. High
levels of miRNAs are labeled as 1 and low levels as 0. A running
example is given in Figure 3.

Naturally, data discretization has to be handled with care
since results will depend on the chosen thresholds. A variety
of different discretization methods are available, see an example
work by Gallo et al. (2016), and the choice should depend on
characteristics of the dataset and the ultimate purpose of the
discretization. We will comment on this issue in more detail in
the discussion.

FIGURE 2 | The scheme for our ASP-based approach to synthetic gene

circuit design.

2.3. Boolean Classifiers
In our context, a classifier is a Boolean function f :{0, 1}n →

{0, 1}, where n is at most the number of considered miRNAs
in a profile. We consider f to be in Conjunctive Normal Form
(CNF), that is, it is a conjunction of clauses where each clause
is the disjunction of negated or non-negated inputs. A perfect
classifier is a Boolean function that allows to accurately separate
samples into two groups (e.g., healthy and diseased) based
on Boolean inputs (e.g., miRNA levels). The Boolean output
value for each sample must be equal to the sample annotation
value in the Annots column. Classifiers which cannot separate
samples perfectly, that is, some samples annotated as negative
are classified as positive (false positive errors) or some samples
annotated as positive are classified as negative (false negative
errors), are called imperfect classifiers.

An example of a perfect classifier for the dataset shown in
Figure 3 is:

(g1 ∨ g3) ∧ ¬g2
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FIGURE 3 | Example data set for 3 samples: 2 negative and 1 positive.

where ∧, ∨ and ¬ represent logical conjunction, disjunction
and negation, respectively. This classifier consists of two clauses,
namely (g1 ∨ g3) and ¬g2, which we call gates in the context
of synthetic biology. The difference between two gates is that
the second one has only one input and the first two. Also, the
second gate has a negated input while the first consists only of
positive inputs. In terms of classifier design the function may
be interpreted as follows: miRNA-g1 or miRNA-g3 should be
highly expressed and miRNA-g2 should be low expressed in
the sample to classify the sample as positive. Then a sample
is classified as positive in three cases: (1) both miRNA-g1 and
miRNA-g3 are highly expressed and miRNA-g2 is low expressed,
(2) miRNA-g1 is highly expressed, miRNA-g3 and miRNA-g2 are
low expressed and (3) miRNA-g3 is highly expressed, miRNA-g1
and miRNA-g2 are low expressed.

2.4. Classifier Constraints
Differences in the structure of the Boolean function, for example,
how the gates are formed, are relevant because they may result
in classifiers that cannot be assembled in the laboratory or in
classifiers that are very expensive to assemble. Based on the study
of Mohammadi et al. (2017) we added constraints that capture
the feasibility of constructing a synthetic circuit based on the
Boolean function. As smaller and simpler classifiers are easier to
assemble an obvious first step is to constrain the overall number
of inputs and gates that appear in the classifier by introducing
upper bounds on both of them. Additionally, only two types of
logic gates may be assembled in the laboratory (Mohammadi
et al., 2017). Thus, the allowed gate types have to be defined.
The gate type description consists of 5 different bounds: lower
and upper bounds for positive and negative inputs and an upper
bound on the total number of occurrences of the gate in the
classifier. The set of above-mentioned constraints we call the
core constraints. An example of a full set of classifier constraints
allowing solutions viable for construction in the lab is given in
Figure 4.

The core constraints may in many cases be extended to
specific needs without much effort. Here, we describe two that
are implemented in our software.

First, it may easily happen that the chosen constraints are
not satisfiable for a given dataset, that is, the perfect classifier
does not exist. This may be caused by the diversity between
cancer samples, but also by experimental artifacts or data
preprocessing errors, for example, in the data discretization

FIGURE 4 | A full set of core classifier constraints. Here, a classifier may

consist of up to 6 gates with overall up to 8 inputs. Gates are either of Type 1

(OR gate) or Type 2 (NOT gate) where the first may have only non-negated

inputs while the second may only be a single negated input.

step. In such case, we can search for an imperfect classifier
allowing misclassification of a certain number of samples. Thus,
we introduced two additional constraints: upper bounds on false
positive and false negative errors. The optimization procedure for
imperfect classifier optimization we call constraint relaxation. A
detailed description is given in the next section.

It is worth considering which type of error we may accept or
even neglect. If the desired response is to cause the cell apoptosis,
a false negative error results in a wrong diagnosis and a cancerous
cell survives. In case of a false positive error a healthy cell will be
diagnosed as diseased and killed. In case of false negative errors
we may avoid killing healthy cells increasing the misclassification
expectancy for the diseased cells at the same time. The first
presented case study, Breast Cancer All, illustrates the flexibility
of our method for finding a feasible classifier in case of forbidding
the false positives.

Second, we formulated the unique-input constraint that
guarantees that miRNA inputs are not shared across different
gates. Constraints of this type, that is, forbidding the use
of certain combinations of miRNAs, might be relevant for
increasing the robustness of the design against noise in miRNA
levels.

2.5. Finding Optimal Classifiers
Once a feasible classifier is specified in terms of gate types and
bounds on inputs and gates, it is usually of interest to find one
that is optimal with respect to a given cost function. Putting
the focus on finding structurally simple classifiers to facilitate
construction, we propose the following optimization problems
for finding a perfect classifier:

(Opt1) Minimize the number of inputs.
(Opt2) Minimize the number of gates.
(Opt3) Minimize the number of inputs followed by the number

of gates.
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(Opt4) Minimize the number of gates followed by the number
of inputs.

The two problems (Opt3) and (Opt4) are bi-level optimization
problems where the upper-level problem is solved first followed
by the lower-level problem. Each of the four strategies may lead
to a different classifier even for the same dataset and classifier
constraints. Here, it might also be interesting to run both (Opt3)
and (Opt4). Results can be evaluated and the final design chosen
accordingly.

In the context of the ASP programming environment (see
the Supplementary Materials) the strategies are implemented
via minimizing weighted sums over all inputs and gates.
Other optimization strategies may be formulated using specific
weighted sums. In particular, it is possible to penalize the use
of certain miRNAs as inputs, for example, if these miRNAs
are known to interfere with other components. The weights
can also be chosen to favor miRNAs whose average distance
from the binarization threshold is large. Apart from decreasing
sensitivity to the threshold choice, this might be beneficial in
terms of robustness to expression level noise. We will discuss
these possibilities later in more detail.

Note that we optimize globally, that is, all solutions (if found)
are the best solutions among all other feasible solutions for a
given dataset. In other words, if a given classifier is a solution
of optimizing with strategy (Opt1) and it consists of 7 inputs
then a classifier with less than 7 inputs for a given dataset under
given constraints does not exist. In addition, the ASP-based
method allows to list all optimal solutions, if more than one
exists. Analysis of commonalities and differences of the optimal
classifiers can then provide additional insight into the importance
of specific inputs or circuit modules for the classification.

However, for some datasets it is impossible to find an optimal

solution satisfying all constraints. As mentioned before, to tackle

that issue we incorporated an optimization procedure for finding

imperfect classifiers (but respecting the core constraints presented

in Figure 4) by allowing a certain number of false positive and

false negative errors using constraints relaxation. In practice,

we first apply an optimization procedure for finding a perfect

classifier without allowing any errors. If a solution does not exist,

we relax the constraints stepwise by increasing the upper bound
values for errors ultimately allowing as many errors as necessary

to find an imperfect classifier. Depending on the application, we

can decide to only allow errors of a specific type or increase
the upper bounds of both types. For the presented case studies
we first looked for a classifier allowing up to 1 false negative
and 0 false positives, then up to 0 false negatives and 1 false
positive, 1 false negative and 1 false positive etc. In case of finding
different solutions allowing the same number of errors in total
we choose a solution with less inputs. However, the procedure
may be easily changed. We present the flexibility of the method
in two case studies. In both, we first search for a classifier using
the procedure described above. In the Breast Cancer All case
study we additionally forbid one type of error and search for a
classifier increasing the number of the second type. Depending
on the application we may need to forbid one type of error. We
discuss it in detail when presenting the case study. In the ER+

Her− case study we look for a first solution with the standard
procedure and then look for another classifier by further increase
of the bounds on errors. In case when the first found classifier
is not short enough or we cannot include one of the miRNAs it
may be useful to extend the set of feasible classifiers. Regardless
of the specific treatment of errors, classifier accuracy is put on the
highest level of the optimization, followed by classifier simplicity
as described above.

Usually, optimal solutions are not unique. There may be
several optimal designs that differ in the miRNAs that are used
or in the way inputs are assigned to gates. In those cases it might
be insightful to enumerate all optimal solutions, for example to
investigate common structural features, or simply to ask which
miRNAs do or do not appear in optimal classifiers. However,
when interested in this feature we need to take care of symmetries
generated in the process of finding the classifiers. ASP allows for
isomorphic classifiers to be counted as different solutions. Gates
are for example assigned an integer identifier which we need
in order to determine which inputs belong to which gate. Any
permutation of assigning IDs to gates will therefore be counted
as a separate solution. Breaking symmetries is an involved topic
of its own. Its importance lies in the fact that the number
of symmetric solutions may explode and seriously hamper the
calculation of all solutions. However, in our applications we can
still easily solve this problem through a post-processing step.
Within a set of optimal solutions returned by the ASP solver
we first sort the gates of each classifier by the IDs of inputs.
Then we rewrite all the solutions by assigning to each gate
an ID in ascending order preserving the original gate to input
relation. The input and gate IDs are then ordered identically
for all the isomorphic solutions in each class what makes them
indistinguishable. An arbitrary solution from such a subset can
be picked as a representative. This procedure is illustrated in the
first case study presented in section 3.2

2.6. Classifier Evaluation
To assess the classifiers resulting from the optimization
procedure we incorporated in our workflow an evaluation step.
We distinguish two settings for the classifier assessment: Boolean
and continuous. In the Boolean setting we consider discretized
datasets and classifiers, that is, Boolean functions, to evaluate
how well the function separates samples for a given dataset. In a
continuous setting we estimate how well a classifier will perform
in a setting closer to reality. Here, we adopt an approach by
Mohammadi et al. (2017), which allows us to also compare our
results directly. It is based on the performance of a classifier
represented by a mechanistic model of the circuit represented by
Hill equations derived from the Boolean classifier on real-valued
miRNA data (Mohammadi et al., 2017).

To asses classifiers in the Boolean setting we calculate the false
positive and false negative rates. Both rates allow to estimate the
expectancy that a sample may be misclassified and how well a
classifier performs in a context of classifying the data.

To evaluate classifiers in the continuous setting we calculate,
as mentioned, the classifier scores proposed by Mohammadi
et al. (2017). The authors developed a mathematical model
of a synthetic regulatory network corresponding to the circuit
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assembled in the laboratory. The model is represented by a set
of Hill equations and describes, for a given Boolean classifier,
an input-output relation, where the inputs are the real-valued
miRNA expression levels and the output is a concentration of a
protein or another desired compound produced by the circuit.
Based on the available information on biochemical reaction rates
the model allows to predict the circuit output concentration for
the continuous miRNA data and a Boolean classifier with respect
to the choice of output binarization thresholds. In other words,
we use the model to estimate whether the concentration of the
output will be sufficient to cause, for example, cell death. For
more details of the procedure see the article of Mohammadi et al.
(2017).

The first score (SAUC) that is considered with the help of the
continuousmodel, the area under the ROC curve (AUC), predicts
how well the classifier responds based on different thresholds
for the circuit output concentration. Additionally, Mohammadi
et al. (2017) distinguish two differentmargins: the averagemargin
(Ma) states the overall ratio between the output in the positive
vs. the negative sample class and shows how well all samples
in the dataset are separated by the output concentration. The
worst margin (Mw) is the smallest output ratio among any pair
of positive and negative samples and helps to capture the outliers.
The second score (Sm) is represented by a weighted sum of these
margins:

Sm = λMa+ (1− λ)Mw

where λ ∈ [0, 1] is a weight that specifies the contribution
of the particular margins. For the breast cancer data sets we
used λ = 0.5 (assuming that both margins are equally relevant)
applied also by Mohammadi et al. (2017) in all studies. Here, we
extend our procedure for finding optimal classifiers described in
the previous section with these two scores. To choose between
classifiers that are all optimal, firstly, with respect to the total
number of errors and, secondly, with respect to the number of
inputs followed by the number of gates, we first look for classifiers
with the highest SAUC and then with the highest Sm. We preserve
all details of the strategy proposed by Mohammadi et al. (2017)
to make the presented results comparable.

As an additional evaluation of our approach, we perform, if
the data permits, cross-validation to test the predictive power
of the calculated optimal classifiers when facing entirely new
samples. We illustrate that for the largest case study dataset
below, where we performed a 3-fold cross validation.

2.7. The Benchmarking: Data Generation
To have a broad picture of the performance of our method we
tested our approach on simulated datasets. Here, we describe how
the datasets were prepared.

We generated random 0-1 matrices, with each entry
independent and 0-1 equally likely to occur, of all dimensions
starting from 10 by 10 going up to 500 by 500 where the
step-sizes of increasing rows and columns are both 10. The
benchmark consists therefore of 50× 50 = 2,500 binary matrices
representing miRNA expression data sets. For each matrix we
generated annotation classifiers that we used to decide which of
the samples are going to be labeled as positive and which as

negative. For each of the four optimization strategies as well as for
the problem of finding a non-optimized classifier, we measured
the time to compute the first solution classifier that satisfies the
core constraints.

Here, we propose two setups for the data generation. In Setup
1, we randomly created annotation classifiers that satisfy the core
constraints by choosing, with equal probabilities, the existing
gates and inputs. This setup guarantees the existence of a solution
to each ASP problem.

In Setup 2 we constructed the annotation classifiers using a
binomial distribution. We defined the maximal number of gates
as ⌊n/10⌋ and the maximal number of inputs per gate as 5. For
a given data matrix we then “tossed a fair coin” for the existence
of each gate and each of its possible inputs. The assignment of
miRNAs to inputs was done with equal probabilities. Of course,
the two parameters (10 and 5) are somewhat arbitrary. The
intention was to find out how the algorithm performs when
it is not guaranteed that there is a solution, which contrasts
Setup 1.

2.8. The Cross-Validation
In addition to the run-time analysis for our ASP-based
implementation we also assessed the quality of the predictions
of the classifiers. We decided to record the generalization error
of a 10-fold cross-validation for Setup 1 (guaranteed existence of
solution), for finding feasible and optimal solutions. The cross-
validation was conservative in that we treated time-outs as false
predictions.

For the cross-validation the rows of each matrix of each
data point were divided into 10 parts of equal size. For each
tenth we built a classifier based on the 9 remaining parts only.
All mismatches between the resulting classifier and the given
annotation classifier on the test set were counted and added
for each tenth. This sum, divided by the sample size, is the
generalization error: the fraction of samples that were incorrectly
predicted in all 10 runs. Note that, as a consequence, the
validation procedure performs 10 times the calculations of a
benchmark.

All computations, for both the benchmarking and the cross-
validation, were performed on a Linux AMD64 with 2.83 GHz
and 32 GB of memory.

3. RESULTS

To test and evaluate our approach in application we present a
case study with five datasets also considered by Mohammadi and
colleagues, allowing a subsequent comparison with their results.
We complement the case study with a performance analysis using
synthetic data.

3.1. Case Studies: Breast Cancer Data
The following breast cancer datasets have been presented by
Farazi et al. (2011) and preprocessed byMohammadi et al. (2017)
via miRNA expression normalization, aggregation of similar
miRNAs and discretization into two levels: high expression and
low expression. The breast cancer dataset referenced as All
includes all samples and consists of four subsets for different
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subtypes of breast cancer. We present a summary description
of the data with the number of miRNAs taken into account
and binarization thresholds applied for the discretization of the
continuous data in Table 1.

We searched for classifiers for the breast cancer All dataset
to separate cancerous from healthy samples and for each breast
cancer subset to separate cancerous samples of each subtype from
healthy samples. For each dataset we first applied the (Opt3)
optimization mode (minimize the number of inputs followed
by the number of gates) and searched for a perfect classifier
respecting the core constraints presented in Figure 4. For one
dataset called Cell Line a perfect single-input classifier was found,
that is, the smallest dataset may be perfectly separated by only one
miRNA. However, for four other datasets (All, Triple-, Her2+,
ER+ Her−) perfect classifiers do not exist. Thus, we applied the
constraints relaxation procedure.

3.2. Breast Cancer All
For the combined Breast Cancer All dataset we found two
classifiers presented in Figure 5.

The first classifier consists of only one gate and one input
miR-378 and results in misclassification with four false negative
(FN rate= 0.02) and three false positive (FP rate = 0.27) errors.
The classifier is the shortest possible classifier and is easy to
assemble in the laboratory. However, it is worth considering
whether one input classifiers are reliable enough to tackle the
cancer cell diversity.

As mentioned before, it is also worth considering whether
one type of error is less desirable or entirely forbidden. Here,
we present results of optimization where we do not allow the
false positives to occur. In this case, we find 6 optimal solutions.
However, all of them are just artifacts of the implementation,
namely being isomorphic to the classifier presented in Figure 5. If
we compare the here presented classifier (miR-24-1∨miR-103-2)
∧ (¬ miR-144) ∧ (¬ miR-378) ∧ (¬ miR-10b) with one of 5
remaining solutions, for example, (miR-24-1 ∨ miR-103-2) ∧

(¬ miR-378) ∧ (¬ miR-10b) ∧ (¬ miR-144) it is clearly visible
that these solutions differ in the order of miRNA IDs assigned
to the three NOT gates. All 6 isomorphic solutions differ, in
fact, in the permutations of the 3 different IDs assigned to
3 NOT gates and belong to the same isomorphism class. We
process the solution set to eliminate these copies as described in
section 2.5. Ultimately, we find only one isomorphism class for
this dataset. Although in this case one is able to easily distinguish

TABLE 1 | Breast cancer dataset description: overall number of samples, number

of positive and negative samples, number of miRNAs taken into account and

binarization threshold applied for data binarization.

Subtype Samples Positive Negative miRNA BinThreshold

All 178 167 11 478 250

Triple- 82 71 11 456 250

Her2+ 86 75 11 438 1,250

ER+ Her− 32 21 11 392 1,250

Cell Line 17 6 11 375 50

the isomorphic solutions without employing an automated post-
processing step it may happen that the computation results in a
few isomorphism classes (e.g., in the case study Breast Cancer
Triple- we find more than one class) and the classifiers consist
of many inputs we may receive even thousands of isomorphic
solutions. Then, using an automated approach to the solution
scanning is inevitable.

Both classifiers presented in Figure 5 share the same gate and
the same inputmiR-378, which is supposed to be down-regulated
in the sample. The study of Farazi et al. (2011) describes miR-
378 as low expressed and confirms that the use of miR-378 as a
potentially down-regulated marker in a classifier is reasonable.
Also an unrelated study shows that, e.g., miR-144, which occurs
in the second classifier, is expected to be down-regulated in breast
cancer (Pan et al., 2016).

For the largest dataset we also performed a 3-fold cross-
validation. The folds consist on average of 56 positive samples
and only 4 negative samples. We divided the dataset in 3 almost
equal subsets (the subset size differs in at most 1 sample) without
taking an even distribution of positive and negative samples
between subsets into account. For all folds it was necessary
to apply the constraints relaxation procedure. The classifiers
result on average in classification with FN rate = 0.01 and
FP rate= 0.56 (FN occurrence average = 1, FP occurrence
average = 3). The results show that our method was able to
classify the positive samples almost perfectly. The very high FP
rate may be a result of a very imbalanced division of negative
vs. positive samples. We address the influence of imbalanced
datasets on the results in the discussion. The cross-validation
resulted in 2 different classifiers: (¬ miR-144) and (¬ miR-10b)
AND (¬ miR-193a-5p). Both miR-144 and miR-10b appeared in
the second presented classifier (Figure 6) and both were marked
as down-regulated in different studies (Farazi et al., 2011; Pan
et al., 2016). However, also miR-193a-5p is marked as down-
regulated by Farazi et al (Farazi et al., 2011). Thus, the choice of
miRNAs seems to be reasonable.

3.3. Breast Cancer Triple-
For the breast cancer Triple- dataset two classifiers were found.
The first classifier consists of two gates of Type 2 (NOT gates)
and the second classifier consists of one gate of Type 1 and one
of Type 2. Both classifiers, shown in Figure 6, are the results of
allowing 3 false negatives and 2 false positives (FN rate = 0.04,
FP rate = 0.18). To decide between those classifiers it should be
discussed in detail whether there are samples which are more
reliable for the classification process or which type of gate is
more desired. This choice makes our method flexible regarding
particular experiments and datasets.

miR-378 is marked as down-regulated in a study by Farazi et al.
(2011). miR-24-1 is described as up-regulated (Roscigno et al.,
2017) and, as mentioned before, miR-144 is described as down-
regulated in breast cancer (Pan et al., 2016). Again, the proposed
classifiers seem to be reasonable.

3.4. Breast Cancer Her2+

The resulting classifier for the datasetHer2+ (shown in Figure 7)
consists of three inputs and three gates: one gate of Type 1
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FIGURE 5 | Classifiers for Breast Cancer All data set.

FIGURE 6 | Classifiers for the breast cancer Triple- data set.

with one input and two gates of Type 2 (FN rate = 0.00,
FP rate= 0.09).

miR-451-DICER1 and miR-320-RNASEN are marked as
down-regulated and miR-21 as up-regulated in a study by Farazi
et al. (2011).

3.5. Breast Cancer ER+ Her−
For the ER+Her− dataset we found one optimal classifier shown
in Figure 6A on the left side. The classifier consists of two gates
of both types and two inputs resulting in a classification with
two false positive errors (FNrate = 0.00, FPrate = 0.18). Here,
we present an additional classifier with only one input forming a
gate of Type 1 resulting in a classification with three false positive
errors (FN rate = 0.00, FP rate = 0.27) shown in Figure 8A

on the right side. In this case we were able to obtain a shorter
classifier relaxing the bounds on the number of false positives
by only one additional error. It is worth considering whether the
one misclassified sample is reliable or if we could neglect it and
build a simpler classifier. Also, in case one of the miRNAs cannot
be included in the classifier or the classifier consist of too many
inputs it may be worth to further increase the bounds on errors.
Note that the first classifier consists of only one gate and the same
gate is a part of the second classifier.

miR-21 is marked as up-regulated and miR-320-RNASEN as
down-regulated by Farazi et al. (2011).

3.6. Breast Cancer Cell Line
For the Cell Line dataset the optimization results in six perfect
classifiers that consists of only one gate and one input each, where

FIGURE 7 | Classifier for the breast cancer Her2+ data separating samples

with one false positive error.

five of them are gates of Type 2 and only one is a gate of Type
1. That is, these classifiers distinguish cancerous from healthy
samples based merely on the expression level of one miRNA (FN
rate= 0.00, FP rate= 0.00). As an example we present a classifier
with a negative input of miRNA mir-145 (see Figure 8B). In this
case the classifier predicts every sample to be cancerous if mir-
145 is at a low expression level. All other samples are predicted to
be healthy. mir-145 is also marked as down-regulated in a study
by Farazi et al. (2011). The six resulting classifiers are presented
in Table 2. In the next section we discuss additional optimality
criteria for choosing between several perfect classifiers.

3.7. Classifier Evaluation
We evaluated our classifiers with the scores.py script and
calculated the following scores: false negative rate (FN rate), false
positive rate (FP rate), SAUC, Sm. We run the calculations keeping
the same biochemical parameter sets and binarization thresholds
for each dataset as proposed by Mohammadi et al. (2017)
to allow a comparison with their results. In the comparison
we consider only pruned circuit designs, that is, circuits post-
processed by authors to decrease the overall number of inputs.
Mohammadi et al. (2017) presented in the article the following
scores: SAUC, Sm. Additionally, we calculated FN and FP rates
for these circuits to compare the scores in the binary setting.
Note that Mohammadi et al. (2017) perform the calculations in
a different modeling framework and consider the discretization
error as one of the optimality criteria while our classifier is only

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 June 2018 | Volume 6 | Article 70

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Becker et al. Designing miRNA-Based Cell Classifiers

FIGURE 8 | Results for the breast cancer (A) ER+ Her− and (B) Cell Line data

sets.

optimized on the binary dataset. Nevertheless, the central goal
in both approaches is to find minimal classifiers. We present the
scores in Table 2.

For the All dataset Mohammadi et al. (2017) presented a
classifier with scores: FN rate= 0.63, FP rate= 0.00, SAUC = 1.00,
Sm = 0.40. Our one-input classifier for this dataset is shorter
(three inputs less). Sm shows that the margins are lower, although
the FN rate is noticeably improved. The cross-validation results
for the same dataset for 3-fold cross-validation presented by
Mohammadi et al. are: SAUC = 0.99, Sm = 0.31. Our results for a
3-fold cross-validation ( SAUC = 0.93, Sm = 0.24) shows that our
method separated the new samples with a very similar accuracy.
Note, that the samples were divided into random subsets by us
and by Mohammadi et al. (2017) independently.

In case of the Triple- dataset we have to choose between two
classifiers. Mohammadi et al. (2017) choose the best classifier
by first looking at the highest SAUC score and then (in case of
equal values) at the highest Sm. Based on the same strategy we
chose the second classifier (miR-21-1) ∧ (¬ miR-378) as the best
classifier for the Triple- dataset. In this case, the classification
results in 5misclassified samples in the binary setting in total. The
margins for the pruned classifier for the same subset presented by
Mohammadi et al. (2017) show better accuracy (FN rate = 0.10,
FP rate= 0.00, SAUC = 1.00, Sm = 0.51). However, the error rates
correspond to 7 errors in total. The classifier optimized with our
approach is simpler (one input less). Thus, it could be easier to
assemble. Additionally, we again reduced the overall number of
errors in the binary setting.

For the Her2+ subtype Mohammadi et al. (2017)
proposed a classifier with scores: FN rate = 0.00, FP rate
= 0.27, SAUC = 1.00, Sm = 0.53. Classifier (miR-21) ∧

(¬miR-451-DICER1) ∧ (¬ miR-320-RNASEN) results in
only one false positive (FN rate= 0.00, FP rate = 0.09). Here,
we reduced the overall number of errors from 3 to 1 in the
binary setting. The lower Sm score is probably related to the one
outlying sample captured by the FP rate. Our classifier is also
shorter (two inputs less). Thus, it could be easier to assemble
in the laboratory. In this case it is worth to consider which
constraint is more important.

For the ER+ Her− subtype Mohammadi et al. (2017)
presented a classifier with scores: FN rate = 0.00, FP rate = 0.27,
SAUC = 1.00, Sm = 0.65. Accuracy of our single-input classifier

TABLE 2 | Evaluation of breast cancer classifiers with scores: false negative rate,

false positive rate, AUC, average margin and worst margin.

Subtype Classifier FN rate FP rate SAUC Sm

BC All (¬ miR-378) 0.02 0.27 0.96 0.16

Triple- (¬ miR-378) ∧ (¬ miR-144) 0.04 0.18 0.98 0.24

(miR-24-1) ∧ (¬ miR-378) 0.04 0.18 0.99 0.25

Her2+ (miR-21) ∧

(¬ miR-451-DICER1) ∧

(¬ miR-320-RNASEN)

0.00 0.09 0.99 0.31

ER+ Her− (miR-21) 0.00 0.27 1.00 0.50

(miR-21) ∧

(¬ miR-320-RNASEN)

0.00 0.18 0.96 0.14

Cell Line (¬ miR-145) 0.00 0.00 1.00 1.50

(¬ miR-143) 0.00 0.00 1.00 1.16

(¬ miR-199a-2-5p) 0.00 0.00 1.00 0.96

(¬ miR-451-DICER1) 0.00 0.00 1.00 0.93

(¬ miR-146a) 0.00 0.00 1.00 0.55

(¬ miR-425) 0.00 0.00 1.00 0.32

(miR-21) is similar and the classifier is shorter (six inputs less).
Both classifiers are presented in Figure 9.

Lastly, in case of the Cell Line dataset all our classifiers are
again shorter (two inputs less). Based on the previously described
strategy we chose (¬miR-145) as the best classifier. The scores in
the continuous setting (Mohammadi et al., 2017: FN rate= 0.00,
FP rate= 0.00, SAUC = 1.00, Sm = 1.71) are comparable.

In all cases we were able to find shorter classifiers and in most
cases improve the accuracy of classification in the binary setting.
Otherwise, the accuracy is identical. In the continuous setting
we obtained comparable results. However, interpretation of these
scores linking the Boolean to the continuous classifier are difficult
to assess. We address this problem in the discussion.

3.8. Performance Analysis on Simulated
Data
Two case studies cannot give a broad picture of the performance
of an algorithm. In particular we were interested in the
approximate number of samples and miRNAs at the breaking
point when the ASP solver does not find a solution anymore.
Clearly, the answer depends on a lot of parameters: How is the
data generated? What are the constraints that specify feasible
solutions? How long do we wait before a problem is deemed
unsolvable?

Each considered dataset consists of a random 0-1 matrix and
an annotation that specifies which rows of the matrix correspond
to positive and which to negative samples. Here, we made use
of two approaches to data generation (described in detail in
section 2.7): Setup 1which ensures that the perfect classifier exists
by a controlled annotation of samples and Setup 2 in which the
annotation is generated in a less restricted manner. The crucial
difference between the two setups is that Setup 1 guarantees the
existence of a solution while Setup 2 does not. A solution classifier
is required to satisfy the core constraints. We searched for feasible
solutions for both setups and measured the time. The resulting
four heat maps are shown in Figure 10.
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FIGURE 9 | Results for the ER+ Her− data set. On the left side a classifier optimized with our approach, on the right side a classifier proposed by Mohammadi et al.

(2017) The single-input classifier consists of only one miRNA which appears twice in the 7-input classifier as one of the inputs in the OR gate.

FIGURE 10 | Results of the benchmarking. Black filled squares indicate that the time-out was reached. Squares outlined in black indicate that the infeasibility of the

problem was proved within the time limit. (A,B) relate to Setup 1. They show the time to compute a feasible and an optimized solution, respectively. (C,D) show the

times to find feasible and optimal solutions for Setup 2. In both setups the optimization strategy 3 was used (first gates, then inputs).

To obtain the benchmark in a reasonable amount of time we
used time-outs between 10 min and 1 h. Figure 10A shows that
within the limits of up to 500 samples and miRNAs, a solution
can be found in a reasonable amount of time. Of the 2,500
problems in Figure 10B about 16%, that is 401, were timed out.
We randomly sampled 10% of these and tried solving them again
with a time-out of 5 h. The result is that 27 problems could be
solved, at an average of 1 h and 27 min and the remaining ones
were timed-out again.

The problem of finding a feasible solution seems to
increase equally with the sample and the miRNA dimension,
see Figure 10A. Computing an optimal solution is, however,

dominated by the number of miRNAs as can be seen in
Figure 10B. We believe that this is caused by the size of
the underlying search space that grows exponentially with the
number of inputs, since essentially all subsets of miRNAs and
possible classifiers may be optimal. Adding more samples, on
the other hand, will quickly lead to redundant information since
most of the input-output values of the annotation classifier are
likely to be already covered.

In Setup 2 we marked problems that were proven to have no
solution with a black outline in the heat map. Interestingly, the
likelihood that a solution exists increases with the number of
miRNAs, see Figures 10C,D. On the one hand, as the number
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of miRNAs increases, the annotation classifier will cover more
and more gates (fixed ratio of possible gates to inputs in Setup
2) and inputs and hence it will be less likely for a classifier
satisfying the core constraints to exist. On the other hand,
each miRNA that is added beyond the ones that are actually
used by the classifier has a slight chance of being exactly the
input that the solution needs. Note that the expression levels
of miRNAs are chosen independently and so each new input
may provide a new information to the classification problem.
We believe that in this setup adding miRNAs may increase the
likelihood of finding a feasible solution. Here, this effect seems
to be dominant, hence the infeasibility of the problem decrease
while increasing the number of miRNAs. Note that this is very
different from real data where miRNA expression levels can
hardly be expected as independent variables (one would expect
strong correlations). Figure 10D is similar to Figure 10C but the
additional requirement of optimality affects the number of time-
outs as the number of miRNAs is increased, see also Figure 10B.

Overall, the two plots of Setup 1 show that only a small portion
of problems may not be solved, even within the time limit of up
to 15 min which could be well extended in practice. The plots of
Setup 2 show that the infeasibility of constraints and data can also
be decided in many cases within the 15 min.

Finally, we decided to benchmark the scalability of the
algorithm with respect to the number of miRNAs, as we expect
that in the future the data matrices will be larger in that
dimension than in the sample-dimension. The benchmark can
be thought of as a single column of one of the previous heat maps
but with more time per problem and for up to 10,000 miRNAs.
The results are shown in Figure 11. For the scalability results we
sampled uniformly 4,500 data points from the 10,000 possible
problems. The problems were generated with Setup 1 and with
a time-out of 30 min.

We see that the mean and standard deviation are both below
10 min, even for 10,000 miRNAs. Also, the number of problems
that were not solvable within the time-limit remains below 20 for
a bin size of 400 problems.

Note, that for the tests we used a computing power
corresponding to a power of a personal computer. We were able
to find feasible solutions on a scale of minutes. When considering
real-world applications one certainly may invest more time and
computing power to obtain feasible, globally optimal solutions
for large datasets.

3.9. Cross-Validation
Here, we present the results for the 10-fold cross-validation for
Setup 1 described in the previous section. The plot in Figure 12A

shows two areas with high error rates: a vertical strip on the left
and the circular area in the top right corner. Our interpretation
for the first one is that depending on the number of gates and
inputs that are used to form a classifier, a certain number of
samples is required before the predictions of a solution become
reliable. In the case of the core constraints we need around 30
samples. The likely reason is that for low sample numbers only a
few input-output behaviors of the annotation are covered, leaving
much room for alternative classifiers that perform poorly on the
hidden data.

The circular region with an increased error in the top right
corner, and in particular, the 4 data points that were assigned an
error rate of 1.0, are explained by the way we deal with time-outs
during the cross validation. If no feasible classifier is found during
a cross-validation we count the whole tenth as false predictions.
The bright yellow dots are problems in which the time-out of 10
min was insufficient for each of the 10 calculations and hence
everything was counted as misclassified.

The same is happening in Figure 12B: the increased error
rate along the miRNA axis reflects that the underlying problems
become too hard for the time limit. Our hypothesis is that, given
unlimited time and with an increasing number of samples and
miRNAs, the error rates will tend toward 0. The justification is
that, first, the existence of a solution is guaranteed by the setup.
And second, the number of gates and inputs of the classifier
is bounded by 6 and 10 respectively. Eventually, every possible
input-output combination will appear in each of the 10 learning
sets and the error rate will therefore tend to 0.

4. DISCUSSION

The main goal of this study was to show the potential of Answer
Set Programming for design problems in synthetic biology, in
particular, in the context of the miRNA-based classifier design.
We created a multi-step workflow for classifier optimization,
which allows to obtain globally optimal perfect and imperfect
(in case when a perfect classifier does not exist) classifiers in a
short time using the computing power of a personal computer.
The constraints we employ, that is, the gate types and bounds
on inputs and occurrences reflect real life requirements for
practical circuit designs (Mohammadi et al., 2017). In case
when a perfect classifier does not exist, which is a common
problem working with real-world data, we apply the constraints
relaxation procedure. For the imperfect classifier we may then
identify the misclassified samples, investigate the reliability
of miRNA profiles for these samples and make a decision
whether some of them may be neglected. On the whole, the
procedure returns globally optimal solution where the main
emphasis is placed on classifier accuracy followed by design
simplicity in terms of number of inputs and gates. Furthermore,
the ASP-based approach allows to list all optimal solutions
for a given problem that the solutions can then be ranked
according to lower-level criteria. Additionally, the solutions can
be further analyzed to identify core features and the extent of
variability.

Five real-world case studies demonstrate that the ASP-based
approach allows to find shorter classifiers than heuristic methods
(Mohammadi et al., 2017), when not optimizing additional cost
functions. We were able to find solutions that result in lower false
negative and false positive rates and decrease the overall number
of errors for all presented data sets. Although we do not optimize
according to the optimality criteria related to continuous cost
functions as proposed by Mohammadi et al. (2017), we still
achieved comparable scores in the continuous setting. These
scores can also be used to further rank the classifiers in the
solution set.
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FIGURE 11 | Results of the scalability test. The plot is a benchmark for 50 sampels and miRNAs that range between 50 and 10,000 with a time-out of 30 min. (A) is a

scatter plot of the problems that could be solved within the time-limit for Setups 1. The red line and bars show the mean and standard deviation. (B) is a histogram of

the number of problems that were timed-out.

FIGURE 12 | Results of the cross-validation. The results of the cross-validation for Setup 1. (A) shows the cross-validations for finding feasible solutions. (B) shows

the cross-validations for finding solutions optimized with strategy 3, that is, first gates then inputs. Note that the growing error rates are due to our conservative

handling of time-outs during the validation, see main text.

Unfortunately, the criteria and scores in both settings,
binary and continuous, are not easily comparable and cannot
be intuitively interpreted together. Future work will aim
at integrating the different aspects employed in choosing
the optimal classifier in the optimization criterion used for
scanning the design space. Beyond the notions already explored
in this paper, we plan to furthermore integrate weights
representing the assessment of data quality, sensitivity to
data discretization and a preference for particular circuit
building blocks to foster reusability of available molecular
constructs.

Although we find globally optimal feasible solutions the
datasets used for the case study analysis were imbalanced.Most of
them consist of several positive samples and only a few negative
samples. It is worth to investigate whether the imbalanced
datasets affect the results and employ additional statistical
methods to decrease the possible influence in a pre-processing
step.

The breast cancer datasets we considered here were pre-
processed by Mohammadi et al. (2017). In the future one may
extend the workflow with a data discretization pre-processing
step. First of all, it may be worth to compare available methods
for data discretization (Gallo et al., 2016) and employ the most
suitable one for the miRNA datasets. Also, to generalize the
discretization error one may consider to estimate discretization
margins. The margins allow to assess the reliability of the
discretization process and may help to screen out the most
valuable miRNAs, that is, miRNAs of which discretized values are
distant from the threshold. Discretization margins may then be
used as weights for the inputs among the dataset. In other words,
the weights for the particular miRNAs make them more or less
desirable in the optimized classifier. Based on the weights it may
be possible to incorporate an improved method of optimization
based on a cost function calculated as a weighted sum for
miRNA inputs used in the Boolean function. Considering the
discretization error may then result in more reliable classifiers.
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The benchmarks suggest that if a set of samples has a
feasible solution then it can be found efficiently using ASP.
That is, even for hundreds of samples and miRNAs, solutions
may typically be obtained on the scale of minutes rather than
hours or days using a personal computer. Thus, the benchmarks
underline the feasibility of our approach for large datasets,
especially in medical applications. In case of classification
based on personalized miRNA profiles similar to the case
studies presented in this work the ASP-based method seems
to be adequate and does not require additional computational
power.

We proposed a classifier designmethodwhich allows to obtain
globally optimal solutions in a short time. The method is flexible
in relation to the given constraints resulting from the complexity
of the biological problem. We also presented several possibilities
to extend the presented tool in the future. However, the task
of classifier design is a complex task demanding an ongoing
cooperation on both sides: experimental and computational to
achieve the compromise between the biological requirements and
computational possibilities.
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