dc.contributor.author
Felsner, Stefan
dc.contributor.author
Gwenaël, Joret
dc.contributor.author
Micek, Piotr
dc.contributor.author
Trotter, William T.
dc.contributor.author
Wiechert, Veit
dc.date.accessioned
2018-07-09T10:18:20Z
dc.date.available
2018-07-09T10:18:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22440
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-249
dc.description.abstract
A classic result of Asplund and Grünbaum states that intersection graphs of axisaligned
rectangles in the plane are χ-bounded. This theorem can be equivalently
stated in terms of path-decompositions as follows: There exists a function f:N→N such that every graph that has two path-decompositions such that each bag of the first decomposition intersects each bag of the second in at most k vertices has chromatic number at most f(k). Recently, Dujmović, Joret, Morin, Norin, and Wood asked whether this remains true more generally for two tree-decompositions. In this note we provide a negative answer: There are graphs with arbitrarily large chromatic number for which one can find two tree-decompositions such that each bag of the first decomposition intersects each bag of the second in at most two vertices. Furthermore, this remains true even if one of the two decompositions is restricted to be a path-decomposition. This is shown using a construction of triangle-free graphs with unbounded chromatic number due to Burling, which we believe should be more widely known.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
de
dc.subject
combinatorics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
de
dc.title
Burling graphs, chromatic number, and orthogonal tree-decompositions
de
dc.type
Wissenschaftlicher Artikel
de
dcterms.bibliographicCitation.journaltitle
Electronic Journal of Combinatorics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
25
dcterms.bibliographicCitation.url
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i1p35
de
dcterms.rightsHolder.note
'Copyright notice' des Verlags: The copyright of published papers remains with the authors.
dcterms.rightsHolder.url
http://www.combinatorics.org/ojs/index.php/eljc/about/submissions#copyrightNotice
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik

de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1077-8926