dc.contributor.author
Walter, Paul
dc.contributor.author
Weimer, Katja
dc.date.accessioned
2018-06-21T20:58:38Z
dc.date.available
2018-06-21T20:58:38Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22216
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-52
dc.description.abstract
Rising poverty and inequality increases the risk of social instability in countries all around the
world. For measuring poverty and inequality there exists a variety of statistical indicators. Estimating
these indicators is trivial as long as the income variable is measured on a metric scale. However,
estimation is not possible, using standard formulas, when the income variable is interval censored (or
grouped), as in the German Microcensus. This is the case for numerous censuses due to confidentiality
constraints or in order to decrease item non-response. To enable the estimation of statistical
indicators in these scenarios, we propose an iterative kernel density algorithm that generates metric
pseudo samples from the interval censored income variable. Based on these pseudo samples,
poverty and inequality indicators are estimated. The standard errors of the indicators are estimated
by a non-parametric bootstrap. Simulation results demonstrate that poverty and inequality indicators
from interval censored data can be unbiasedly estimated by the proposed kernel density algorithm.
Also the standard errors are correctly estimated by the non-parametric bootstrap. The kernel density
algorithm is applied in this work to estimate regional poverty and inequality indicators from German
Microcensus data. The results show the regional distribution of poverty and inequality in Germany.
en
dc.format.extent
23 Seiten
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
de
dc.subject
direct estimation
en
dc.subject
interval censored data
en
dc.subject
grouped data
en
dc.subject
kernel density estimation
en
dc.subject
German Microcensus
en
dc.subject.ddc
300 Sozialwissenschaften::310 Statistiken::310 Sammlungen allgemeiner Statistiken
de
dc.title
Estimating Poverty and Inequality Indicators using Interval Censored Income Data from the German Microcensus
de
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-22216-8
refubium.affiliation
Wirtschaftswissenschaft
de
refubium.resourceType.isindependentpub
yes
de
refubium.series.issueNumber
2018,5 : Economics
de
refubium.series.name
Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin
de
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access