dc.contributor.author
Rojas-Perilla, Natalia
dc.contributor.author
Pannier, Sören
dc.contributor.author
Schmid, Timo
dc.contributor.author
Tzavidis, Nikos
dc.date.accessioned
2018-06-08T11:45:15Z
dc.date.available
2017-12-15T06:40:58.365Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22048
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25252
dc.description.abstract
Small area models typically depend on the validity of model as- sumptions. For
example, a commonly used version of the Empirical Best Predictor relies on the
Gaussian assumptions of the error terms of the linear mixed model, a feature
rarely observed in applications with real data. The present paper proposes to
tackle the potential lack of validity of the model assumptions by using data-
driven scaled transformations as opposed to ad-hoc chosen transformations.
Dif- ferent types of transformations are explored, the estimation of the
transformation parameters is studied in detail under a linear mixed model and
transformations are used in small area prediction of lin- ear and non-linear
parameters. The use of scaled transformations is crucial as it allows for
fitting the linear mixed model with standard software and hence it simplifies
the work of the data analyst. Mean squared error estimation that accounts for
the uncertainty due to the estimation of the transformation parameters is
explored using para- metric and semi-parametric (wild) bootstrap. The proposed
methods are illustrated using real survey and census data for estimating in-
come deprivation parameters for municipalities in the Mexican state of
Guerrero. Extensive simulation studies and the results from the application
show that using carefully selected, data driven transfor- mations can improve
small area estimation.
en
dc.format.extent
34 Seiten
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000720-9
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000006-7
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Small area estimation
dc.subject
linear mixed regression model
dc.subject
MSE es- timation
dc.subject
data-driven transformations
dc.subject
poverty mapping
dc.subject
maximum likelihood theory
dc.subject.ddc
300 Sozialwissenschaften::310 Statistiken
dc.title
Data-Driven Transformations In Small Area Estimation
dc.identifier.urn
urn:nbn:de:kobv:188-fudocsdocument000000028662-7
refubium.affiliation
Wirtschaftswissenschaft
de
refubium.mycore.fudocsId
FUDOCS_document_000000028662
refubium.series.issueNumber
2017,30 : Economics
refubium.series.name
Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin
refubium.mycore.derivateId
FUDOCS_derivate_000000009237
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access