Electronic-state–lifetime interference is a phenomenon specific for ionization of atoms and molecules in the hard-x-ray regime. Using resonant KL2,3L2,3 Auger decay in argon as a showcase, we present a model that allows extracting the interference terms directly from the cross sections of the final electronic states. The analysis provides fundamental information on the excitation and decay processes such as probabilities of various decay paths and the values of the dipole matrix elements for transitions to the excited states. Our results shed light on the interplay between spectator, shake-down, and shake-up processes in the relaxation of deep core-hole states.