dc.contributor.author
Lorenzi, Juan M.
dc.contributor.author
Stecher, Thomas
dc.contributor.author
Reuter, Karsten
dc.contributor.author
Matera, Sebastian
dc.date.accessioned
2018-06-08T11:00:45Z
dc.date.available
2017-12-12T14:06:27.935Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/21464
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24756
dc.description.abstract
Many problems in computational materials science and chemistry require the
evaluation of expensive functions with locally rapid changes, such as the
turn-over frequency of first principles kinetic Monte Carlo models for
heterogeneous catalysis. Because of the high computational cost, it is often
desirable to replace the original with a surrogate model, e.g., for use in
coupled multiscale simulations. The construction of surrogates becomes
particularly challenging in high-dimensions. Here, we present a novel version
of the modified Shepard interpolation method which can overcome the curse of
dimensionality for such functions to give faithful reconstructions even from
very modest numbers of function evaluations. The introduction of local metrics
allows us to take advantage of the fact that, on a local scale, rapid
variation often occurs only across a small number of directions. Furthermore,
we use local error estimates to weigh different local approximations, which
helps avoid artificial oscillations. Finally, we test our approach on a number
of challenging analytic functions as well as a realistic kinetic Monte Carlo
model. Our method not only outperforms existing isotropic metric Shepard
methods but also state-of-the-art Gaussian process regression.
en
dc.format.extent
15 Seiten
dc.rights.uri
http://publishing.aip.org/authors/rights-and-permissions
dc.subject
Linear regression
dc.subject
Monte Carlo methods
dc.subject
Gaussian processes
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Local-metrics error-based Shepard interpolation as surrogate for highly non-
linear material models in high dimensions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
The Journal of Chemical Physics 147 (2017), Nr. 164106
dcterms.bibliographicCitation.doi
10.1063/1.4997286
dcterms.bibliographicCitation.url
http://doi.org/10.1063/1.4997286
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.funding
OpenAccess Publikation in Allianzlizenz
refubium.mycore.fudocsId
FUDOCS_document_000000028652
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009230
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0021-9606
dcterms.isPartOf.issn
1089-7690