Abstract Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain- hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder. Author summary During brain development, localized gene expression is crucial for the formation and function of specific brain regions. Various groups of proteins are known to regulate segmentation through controlled gene expression, among them, the Rho GTPase regulator family. In this study, we identified a frameshift mutation in the Rho guanine nucleotide exchange factor 2 gene (ARHGEF2) in two children presenting with intellectual disability, mild microcephaly, and a midbrain- hindbrain malformation. This phenotype is also observed in Arhgef2 mutant mice, highlighting the importance of ARHGEF2 across development of distinct mammalian species. We show that loss of Arhgef2 affects neurogenesis and also cell migration. In addition, we extended the current knowledge of ARHGEF2 expression and its role in early central nervous system development, with special reference to the formation of the precerebellar system. In addition to extensive literature on ARHGEF2, we now provide evidence for its significant role in neuronal migration in brain development and link the gene to human neurodevelopmental disease.