We devise a functional renormalization group treatment for a chain of interacting spinless fermions which is correct up to second order in interaction strength. We treat both inhomogeneous systems in real space as well as the translationally invariant case in a k-space formalism. The strengths and shortcomings of the different schemes as well as technical details of their implementation are discussed. We use the method to study two proof-of-principle problems in the realm of Luttinger liquid physics, namely, reflection at interfaces and power laws in the occupation number as a function of crystal momentum.