To represent one’s upper limbs for action, the brain relies on a combined position estimate based on visual and proprioceptive information. Monkey neurophysiology and human brain imaging suggest that the underlying operations are implemented in a network of fronto-parietal and occipitotemporal cortical areas. Recently, a potential hierarchical arrangement of these areas has been proposed, emphasizing the posterior parietal cortex (PPC) in early multisensory comparison and integration. Here, we used functional magnetic resonance imaging (fMRI) and a virtual reality-based setup to briefly (0.5 s) present healthy human participants photorealistic virtual hands, of matching or nonmatching anatomical side, or objects at the same or a different location than their real hidden left or right hand. The inferior parietal lobe (IPL) of the left PPC showed a significant preference for congruent visuoproprioceptive hand position information. Moreover, the left body part-selective extrastriate body area (EBA; functionally localized) significantly increased its coupling with the left IPL during visuoproprioceptive congruence vs. incongruence. Our results suggest that the PPC implements early visuoproprioceptive comparison and integration processes, likely relying on information exchange with the EBA.