dc.contributor.author
Starke, Ludger
dc.contributor.author
Ostwald, Dirk
dc.date.accessioned
2018-06-08T10:35:56Z
dc.date.available
2017-10-05T11:16:14.884Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20708
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24007
dc.description.abstract
Variational Bayes (VB), variational maximum likelihood (VML), restricted
maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone
parametric statistical estimation techniques in the analysis of functional
neuroimaging data. However, the theoretical underpinnings of these model
parameter estimation techniques are rarely covered in introductory statistical
texts. Because of the widespread practical use of VB, VML, ReML, and ML in the
neuroimaging community, we reasoned that a theoretical treatment of their
relationships and their application in a basic modeling scenario may be
helpful for both neuroimaging novices and practitioners alike. In this
technical study, we thus revisit the conceptual and formal underpinnings of
VB, VML, ReML, and ML and provide a detailed account of their mathematical
relationships and implementational details. We further apply VB, VML, ReML,
and ML to the general linear model (GLM) with non-spherical error covariance
as commonly encountered in the first-level analysis of fMRI data. To this end,
we explicitly derive the corresponding free energy objective functions and
ensuing iterative algorithms. Finally, in the applied part of our study, we
evaluate the parameter and model recovery properties of VB, VML, ReML, and ML,
first in an exemplary setting and then in the analysis of experimental fMRI
data acquired from a single participant under visual stimulation.
en
dc.format.extent
22 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
variational Bayes
dc.subject
general linear model (GLM)
dc.subject
fMRI neuroimaging
dc.subject
restricted maximum likelihood estimation
dc.subject
covariance estimation
dc.subject
machine learning
dc.subject.ddc
500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::500 Naturwissenschaften und Mathematik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::519 Wahrscheinlichkeiten, angewandte Mathematik
dc.title
Variational Bayesian Parameter Estimation Techniques for the General Linear
Model
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Frontiers in Neuroscience. - 11 (2017), Art. 504
dcterms.bibliographicCitation.doi
10.3389/fnins.2017.00504
dcterms.bibliographicCitation.url
http://doi.org/10.3389/fnins.2017.00504
refubium.affiliation
Erziehungswissenschaft und Psychologie
de
refubium.funding
Sonstige
refubium.funding.id
Inst. Mitgliedschaft bei Frontiers
refubium.mycore.fudocsId
FUDOCS_document_000000028130
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1662-4548
dcterms.isPartOf.issn
1662-453X