id,collection,dc.contributor.author,dc.date.accessioned,dc.date.available,dc.date.issued,dc.description.abstract[en],dc.format.extent,dc.identifier.uri,dc.language,dc.rights.uri,dc.subject,dc.subject.ddc,dc.title,dc.type,dcterms.accessRights.openaire,dcterms.bibliographicCitation,dcterms.bibliographicCitation.doi,dcterms.bibliographicCitation.url,dcterms.isPartOf.issn,refubium.affiliation[de],refubium.funding,refubium.funding.id,refubium.mycore.fudocsId,refubium.note.author,refubium.resourceType.isindependentpub "82c1c2c0-5385-417f-8639-bee83f386c4e","fub188/16","Starke, Ludger||Ostwald, Dirk","2018-06-08T10:35:56Z","2017-10-05T11:16:14.884Z","2017","Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging data. However, the theoretical underpinnings of these model parameter estimation techniques are rarely covered in introductory statistical texts. Because of the widespread practical use of VB, VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical treatment of their relationships and their application in a basic modeling scenario may be helpful for both neuroimaging novices and practitioners alike. In this technical study, we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML and provide a detailed account of their mathematical relationships and implementational details. We further apply VB, VML, ReML, and ML to the general linear model (GLM) with non-spherical error covariance as commonly encountered in the first-level analysis of fMRI data. To this end, we explicitly derive the corresponding free energy objective functions and ensuing iterative algorithms. Finally, in the applied part of our study, we evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first in an exemplary setting and then in the analysis of experimental fMRI data acquired from a single participant under visual stimulation.","22 Seiten","https://refubium.fu-berlin.de/handle/fub188/20708||http://dx.doi.org/10.17169/refubium-24007","eng","http://creativecommons.org/licenses/by/4.0/","variational Bayes||general linear model (GLM)||fMRI neuroimaging||restricted maximum likelihood estimation||covariance estimation||data analysis||machine learning","500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::500 Naturwissenschaften und Mathematik||500 Naturwissenschaften und Mathematik::510 Mathematik::519 Wahrscheinlichkeiten, angewandte Mathematik","Variational Bayesian Parameter Estimation Techniques for the General Linear Model","Wissenschaftlicher Artikel","open access","Frontiers in Neuroscience. - 11 (2017), Art. 504","10.3389/fnins.2017.00504","http://doi.org/10.3389/fnins.2017.00504","1662-4548||1662-453X","Erziehungswissenschaft und Psychologie","Sonstige","Inst. Mitgliedschaft bei Frontiers","FUDOCS_document_000000028130","Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.","no"