dc.contributor.author
Seshaditya, A.
dc.contributor.author
Ghiringhelli, Luca M.
dc.contributor.author
Delle Site, Luigi
dc.date.accessioned
2018-06-08T10:32:55Z
dc.date.available
2018-03-27T10:13:38.799Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20635
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23936
dc.description.abstract
We consider a gas of interacting electrons in the limit of nearly uniform
density and treat the one dimensional (1D), two dimensional (2D) and three
dimensional (3D) cases. We focus on the determination of the correlation part
of the kinetic functional by employing a Monte Carlo sampling technique of
electrons in space based on an analytic derivation via the Levy-Lieb
constrained search principle. Of particular interest is the question of the
behaviour of the functional as one passes from 1D to 3D; according to the
basic principles of Density Functional Theory (DFT) the form of the universal
functional should be independent of the dimensionality. However, in practice
the straightforward use of current approximate functionals in different
dimensions is problematic. Here, we show that going from the 3D to the 2D case
the functional form is consistent (concave function) but in 1D becomes convex;
such a drastic difference is peculiar of 1D electron systems as it is for
other quantities. Given the interesting behaviour of the functional, this
study represents a basic first-principle approach to the problem and suggests
further investigations using highly accurate (though expensive) many-electron
computational techniques, such as Quantum Monte Carlo.
en
dc.format.extent
10 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Levy-Lieb principle
dc.subject
Monte Carlo sampling of electrons
dc.subject
kinetic-energy functionals
dc.subject
dimensionality
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the
Electronic Kinetic Functional
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Computation 5 (2017), 30
dcterms.bibliographicCitation.doi
10.3390/computation5020030
dcterms.bibliographicCitation.url
http://doi.org/10.3390/computation5020030
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000029416
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009581
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2079-3197