dc.contributor.author
Gorenflo, Rudolf
dc.contributor.author
Mainardi, Francesco
dc.date.accessioned
2018-06-08T10:32:43Z
dc.date.available
2018-02-26T13:34:58.890Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20622
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23923
dc.description.abstract
We consider the renewal counting number process N = N(t) as a forward march
over the non-negative integers with independent identically distributed
waiting times. We embed the values of the counting numbers N in a “pseudo-
spatial” non-negative half-line x ≥ 0 and observe that for physical time
likewise we have t ≥ 0. Thus we apply the Laplace transform with respect to
both variables x and t. Applying then a modification of the Montroll-Weiss-Cox
formalism of continuous time random walk we obtain the essential
characteristics of a renewal process in the transform domain and, if we are
lucky, also in the physical domain. The process t = t(N) of accumulation of
waiting times is inverse to the counting number process, in honour of the
Danish mathematician and telecommunication engineer A.K. Erlang we call it the
Erlang process. It yields the probability of exactly n renewal events in the
interval (0; t]. We apply our Laplace-Laplace formalism to the fractional
Poisson process whose waiting times are of Mittag-Leffler type and to a
renewal process whose waiting times are of Wright type. The process of Mittag-
Leffler type includes as a limiting case the classical Poisson process, the
process of Wright type represents the discretized stable subordinator and a
re-scaled version of it was used in our method of parametric subordination of
time-space fractional diffusion processes. Properly rescaling the counting
number process N(t) and the Erlang process t(N) yields as diffusion limits the
inverse stable and the stable subordinator, respectively. View Full-Text
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
renewal process
dc.subject
Continuous Time Random Walk
dc.subject
erlang process
dc.subject
Mittag-Leffler function
dc.subject
wright function
dc.subject
fractional Poisson process
dc.subject
stable distributions
dc.subject
stable and inverse stable subordinator
dc.subject
diffusion limit
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
On the Fractional Poisson Process and the Discretized Stable Subordinator
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Axioms. - 4 (2015), 3, S. 321-344
dcterms.bibliographicCitation.doi
10.3390/axioms4030321
dcterms.bibliographicCitation.url
http://www.mdpi.com/2075-1680/4/3/321
refubium.affiliation
Mathematik und Informatik
de
refubium.mycore.fudocsId
FUDOCS_document_000000029123
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009467
dcterms.accessRights.openaire
open access