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Abstract: We consider the renewal counting number process N = N(t) as a forward march
over the non-negative integers with independent identically distributed waiting times. We
embed the values of the counting numbers N in a “pseudo-spatial” non-negative half-line
x ≥ 0 and observe that for physical time likewise we have t ≥ 0. Thus we apply the
Laplace transform with respect to both variables x and t. Applying then a modification of
the Montroll-Weiss-Cox formalism of continuous time random walk we obtain the essential
characteristics of a renewal process in the transform domain and, if we are lucky, also in the
physical domain. The process t = t(N) of accumulation of waiting times is inverse to the
counting number process, in honour of the Danish mathematician and telecommunication
engineer A.K. Erlang we call it the Erlang process. It yields the probability of exactly
n renewal events in the interval (0, t]. We apply our Laplace-Laplace formalism to the
fractional Poisson process whose waiting times are of Mittag-Leffler type and to a renewal
process whose waiting times are of Wright type. The process of Mittag-Leffler type includes
as a limiting case the classical Poisson process, the process of Wright type represents the
discretized stable subordinator and a re-scaled version of it was used in our method of
parametric subordination of time-space fractional diffusion processes. Properly rescaling
the counting number process N(t) and the Erlang process t(N) yields as diffusion limits the
inverse stable and the stable subordinator, respectively.
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1. Introduction

Serious studies of the fractional generalization of the Poisson process—replacement of the
exponential waiting time distribution by a distribution given via a Mittag-Leffler function with modified
argument—have been started around the turn of the millenium, and since then many papers on its
various aspects have appeared. There are in the literature many papers on this generalization where
the authors have outlined a number of aspects and definitions, see e.g., Repin and Saichev (2000) [1],
Wang et al. (2003,2006) [2,3], Laskin (2003,2009) [4,5], Mainardi et al. (2004) [6], Uchaikin et al.
(2008) [7], Beghin and Orsingher (2009) [8], Cahoy et al. (2010) [9], Meerschaert et al. (2011) [10],
Politi et al. (2011) [11], Kochubei (2012) [12], so that it seems impossible to list them all exhaustively.
However, in effect this generalization was used already in 1995: Hilfer and Anton [13] (without saying
it in our words) showed that the Fractional Kolmogorov-Feller equation (replacement of the first order
time derivative by a fractional derivative of order between 0 and 1) requires the underlying random walk
to be subordinated to a renewal process with Mittag-Leffler waiting time.

Here we will present our formalism for obtaining the essential characteristics of a generic renewal
process and apply it to get those of the fractional Poisson counting process and its inverse, the
fractional Erlang process. Both of these comprise as limiting cases the corresponding well-known
non-fractional processes that are based on exponential waiting time. Then we will analyze an alternative
renewal process, that we call the “Wright process”, investigated by Mainardi et al.
(2000,2005,2007) [14–16], a process arising by discretization of the stable subordinator. In it the
so-called M -Wright function plays the essential role. A scaled version of this process has been used
by Barkai (2002) [17] for approximating the time-fractional diffusion process directly by a random
walk subordinated to it (executing this scaled version in natural time), and he has found rather poor
convergence in refinement. In Gorenflo et al. (2007) [18] we have modified the way of using this
discretized stable subordinator. By appropriate discretization of the relevant spatial stable process we
have then obtained a simulation method equivalent to the solution of a pair of Langevin equations, see
Fogedby (1994) [19] and Kleinhans and Friedrich (2007) [20]. For simulation of space-time fractional
diffusion one so obtains a sequence of precise snapshots of a true particle trajectory, see for details
Gorenflo et al. (2007) [18], and also Gorenflo and Mainardi (2011, 2012) [21,22].

However, we should note that already in the Sixties of the past century, Gnedenko and Kovalenko
(1968) [23] obtained in disguised form the fractional Poisson process by properly rescaled infinite
thinning (rarefaction) of a renewal process with power law waiting time. By “disguised” we mean
that they found the Laplace transform of the Mittag-Leffler waiting time density, but being ignorant
of the Mittag-Leffler function they only presented this Laplace transform. The same ignorance of
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the Mittag-Leffler function we again meet in a 1985 paper by Balakrishnan [24], who exhibited the
Mittag-Leffler waiting time density in Laplace disguise as essential for approximating time-fractional
diffusion for which he used the description in form of a fractional integro-differential equation. We
have shown that the Mittag-Leffler waiting time density in a certain sense is asymptotically universal for
power law renewal processes, see Gorenflo and Mainardi (2008) [25], Gorenflo (2010) [26].

The structure of our paper is as follows. In Section 2 we discuss the elements of the general
renewal theory and the CTRW concept. In Section 3 we introduce the Poisson process and its fractional
generalization then, in Section 4, the so-called Wright process related to the stable subordinator and its
discretization. For both processes we consider the corresponding inverse processes, the Erlang processes.
In Section 5 we briefly discuss the diffusion limit for all the above processes. Section 6 is devoted to
conclusions. We have collected in Appendix A notations and terminology, in particular the basics on
operators, integral transforms and special functions required for understanding our analysis. Finally, we
provide in Appendix B an overview on the essential results.

For related aspects of subordination we refer the readers to our papers [18,21,22,25,27] and to papers
by Bazhlekova [28], by Merschaert’s team [10,29,30], and by Umarov [31].

2. Elements of Renewal Theory and CTRW

For the reader’s convenience let us here present a brief introduction to renewal theory including the
basics of continuous time random walk (CTRW).

2.1. The General Renewal Process

By a renewal process we mean an infinite sequence 0 = t0 < t1 < t2 < · · · of events separated by
i.i.d. (independent and identically distributed) random waiting times Tj = tj − tj−1, whose probability
density φ(t) is given as a function or generalized function in the sense of Gel’fand and Shilov [32]
(interpretable as a measure) with support on the positive real axis t ≥ 0, non-negative: φ(t) ≥ 0, and

normalized:
∫ ∞
0

φ(t) dt = 1, but not having a delta peak at the origin t = 0. The instant t0 = 0 is

not counted as an event. An important global characteristic of a renewal process is its mean waiting

time 〈T 〉 =

∫ ∞
0

tφ(t) dt. It may be finite or infinite. In any renewal process we can distinguish two

processes, namely the counting number process and the process inverse to it, that we call the Erlang
process. The instants t1, t2, t3, . . . are often called renewals. In fact renewal theory is relevant in practice
of maintenance or required exchange of failed parts, e.g., light bulbs.

2.2. The Counting Number Process and Its Inverse

We are interested in the counting number process x = N = N(t)

N(t) := max {n|tn ≤ t} = n for tn ≤ t < tn+1 , n = 0, 1, 2, · · · (2.1)

where in particular N(0) = 0. We ask for the counting number probabilities in n, evolving in t,

pn(t) := P [N(t) = n] , n = 0, 1, 2, · · · (2.2)
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We denote by p(x, t) the sojourn density for the counting number having the value x. For this process
the expectation is

m(t) := 〈N(t)〉 =
∞∑
n=0

n pn(t) =

∫ ∞
0

x p(x, t) dx (2.3)

[since p(x, t) =
∞∑
n=0

pn(t) δ(x− n), see (2.12)] It provides the mean number of events in the

half-open interval (0, t], and is called the renewal function, see e.g., [33]. We also will look at the
process t = t(N), the inverse to the process N = N(t), that we call the Erlang process in honour of
the Danish telecommunication engineer A.K. Erlang (1878–1929), see Brockmeyer et al. (1948) [34]. It
gives the value of time t = tN of the N -th renewal. We ask for the Erlang probability densities

qn(t) = q(t, n) , n = 0, 1, 2, . . . (2.4)

For every n the function qn(t) = q(t, n) is a density in the variable of time having value t in the instant
of the n-th event. Clearly, this event occurs after n (original) waiting times have passed, so that

qn(t) = φ∗n(t) with Laplace transform q̃n(s) = (φ̃(s)n) (2.5)

In other words the function qn(t) = q(t, n) is a probability density in the variable t ≥ 0 evolving in the
variable x = n = 0, 1, 2, ....

2.3. The Continuous time Random Walk

A continuous time random walk (CTRW) is given by an infinite sequence of spatial positions
0 = x0, x1, x2, · · · , separated by (i.i.d.) random jumps Xj = xj − xj−1, whose probability density
function w(x) is given as a non-negative function or generalized function (interpretable as a measure)

with support on the real axis −∞ < x < +∞ and normalized:
∫ ∞
0

w(x) dx = 1, this random walk

being subordinated to a renewal process so that we have a random process x = x(t) on the real axis with
the property x(t) = xn for tn ≤ t < tn+1, n = 0, 1, 2, · · · .

We ask for the sojourn probability density u(x, t) of a particle wandering according to the random
process x = x(t) being in point x at instant t.

Let us define the following cumulative probabilities related to the probability density function φ(t)

Φ(t) =

∫ t+

0

φ(t′) dt′ , Ψ(t) =

∫ ∞
t+

φ(t′) dt′ = 1− Φ(t) (2.6)

For definiteness, we take Φ(t) as right-continuous, Ψ(t) as left-continuous. When the non-negative
random variable represents the lifetime of a technical system, it is common to call Φ(t) := P (T ≤ t)

the failure probability and Ψ(t) := P (T > t) the survival probability, because Φ(t) and Ψ(t) are
the respective probabilities that the system does or does not fail in (0, t]. These terms, however, are
commonly adopted for any renewal process.

In the Fourier-Laplace domain we have

Ψ̃(s) =
1− φ̃(s)

s
(2.7)
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and the famous Montroll-Weiss solution formula for a CTRW, see [35,36]

̂̃u(κ, s) =
1− φ̃(s)

s

∞∑
n=0

(
φ̃(s) ŵ(κ)

)n
=

1− φ̃(s)

s

1

1− φ̃(s) ŵ(κ)
(2.8)

In our special situation the jump density has support only on the positive semi-axis x ≥ 0 and thus,
by replacing the space-Fourier transform ŵ(κ) with the space-Laplace transform w̃(κ), we obtain from
(2.8) the Laplace-Laplace solution that we re-write as a new equation

˜̃u(κ, s) =
1− φ̃(s)

s

∞∑
n=0

(
φ̃(s) w̃(κ)

)n
=

1− φ̃(s)

s

1

1− φ̃(s) w̃(κ)
(2.9)

Recalling from Appendix the definition of convolutions, in the physical domain we have for the solution
u(x, t) the Cox-Weiss series, see [36,37],

u(x, t) =

(
Ψ ∗

∞∑
n=0

φ∗nw∗n

)
(x, t) (2.10)

This formula has an intuitive meaning: Up to and including instant t, there have occurred 0 jumps, or 1
jump, or 2 jumps, or . . . , and if the last jump has occurred at instant t′ < t, the wanderer is resting there
for a duration t− t′.

From the rich literature on the concept of CTRW and its applications we recommend to study the
surveys by Metzler and Klafter [38,39] and the original article by Chechkin, Hofmann and Sokolov [40].

2.4. Renewal Process as a Special CTRW

The essential trick of what follows consists in a rather non-conventional use of the CTRW concept.
We treat renewal processes as continuous time random walks with waiting time density φ(t) and special
jump density w(x) = δ(x−1) corresponding to the fact that the counting number N(t) increases by 1 at
each positive event instant tn. We then have w̃(κ) = exp (−κ) and get for the counting number process
N(t) the sojourn density in the transform domain (s ≥ 0, κ ≥ 0),

˜̃p(κ, s) =
1− φ̃(s)

s

∞∑
n=0

(
φ̃(s)

)n
e−nκ =

1− φ̃(s)

s

1

1− φ̃(s) e−κ
(2.11)

From this formula we can find formulas for the renewal function m(t) and the probabilities
pn(t) = P{N(t) = n}. Because N(t) assumes as values only the non-negative integers, the sojourn
density p(x, t) vanishes if x is not equal to one of these, but has a delta peak of height pn(t) for x = n

(n = 0, 1, 2, 3, · · · ). Hence

p(x, t) =
∞∑
n=0

pn(t) δ(x− n) (2.12)

Inverting (2.11) with respect to κ and s as

p(x, t) =
∞∑
n=0

(Ψ ∗ φ∗n) (t) δ(x− n) (2.13)
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we identify
pn(t) = (Ψ ∗ φ∗n) (t) (2.14)

According to the theory of Laplace transform we conclude from Equations (2.2) and (2.12)

m(t) = − ∂

∂κ
p̃(κ, t)|κ=0 =

(
∞∑
n=0

n pn(t) e−nκ

)∣∣∣∣∣
κ=0

=
∞∑
n=0

n pn(t) (2.15)

a result naturally expected, and

m̃(s) =
∞∑
n=0

n p̃n(s) = Ψ̃(s)
∞∑
n=0

n
(
φ̃(s)

)n
=

φ̃(s)

s
(

1− φ̃(s)
) (2.16)

thereby using the identity
∞∑
n=0

nzn =
z

(1− z)2
, |z| < 1

Thus we have found in the Laplace domain the reciprocal pair of relationships

m̃(s) =
φ̃(s)

s(1− φ̃(s))
, φ̃(s) =

s m̃(s)

1 + s m̃(s))
(2.17)

saying that the waiting time density and the renewal function mutually determine each other uniquely.
The first formula of Equation (2.17) can also be obtained as the value at κ = 0 of the negative derivative
for κ = 0 of the last expression in Equation (2.11). Equation (2.17) implies the reciprocal pair of
relationships in the physical domain

m(t) =

∫ t

0

[1 +m(t− t′)]φ(t′) dt′ , m′(t) =

∫ t

0

[1 +m′(t− t′)]φ(t′) dt′ (2.18)

The first of these equations usually is called the renewal equation.
Considering, formally, the counting number process N = N(t) as CTRW (with jumps fixed to unit

jumps 1), N running increasingly through the non-negative integers x = 0, 1, 2, ..., happening in natural
time t ∈ [0,∞), we note that in the Erlang process t = t(N), the roles of N and t are interchanged. The
new “waiting time density” now is w(x) = δ(x− 1), the new “jump density” is φ(t).

It is illuminating to consciously perceive the relationships for t ≥ 0, n = 0, 1, 2, . . ., between
the counting number probabilities pn(t) and the Erlang densities qn(t). For Equation (2.5) we have
qn(t) = φ∗n(t), and then by (2.14)

pn(t) = (Ψ ∗ qn) (t) =

∫ t

0

(qn(t′)− qn+1(t)) dt
′ (2.19)

We can also express the qn in another way by the pn. Introducing the cumulative probabilities

Qn(t) =

∫ t

0

qn(t′) dt′, we have

Qn(t) = P

(
n∑

k=1

Tk ≤ t

)
= P (N(t) ≥ n) =

∞∑
k=n

pk(t) (2.20)
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finally

qn(t) =
d

dt
Qn(t) =

d

dt

∞∑
k=n

pk(t) (2.21)

All this is true for n = 0 as‘well, by the empty sum convention
n∑

k=1

Tk = 0 for n = 0.

3. The Poisson Process and Its Fractional Generalization

The most popular renewal process is the Poisson process. It is (uniquely) characterized by its
mean waiting time 1/λ (equivalently by its intensity λ), which is a given positive number, and by its
residual waiting time Ψ(t) = exp (−λt) for t ≥ 0, which corresponds to the waiting time density
φ(t) = λ exp (−λt). With λ = 1 we have what we call the standard Poisson process. The general
Poisson process arises from the standard one by rescaling the time variable t.

We generalize the standard Poisson process by replacing the exponential function by a function of
Mittag-Leffler type. With t ≥ 0 and a parameter β ∈ (0, 1] we take Ψ(t) = Eβ(−tβ) ,

φ(t) = − d

dt
Eβ(−tβ) = βtβ−1E ′β(−tβ) = tβ−1Eβ,β(−tβ)

(3.1)

The functions Ψ(t) and φ(t) are plotted versus time for some values of β in Figure 1.
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Figure 1. The functions Ψ(t) (left) and φ(t) (right) versus t (10−2 < t < 102) for the
renewal processes of Mittag-Leffler type with β = 0.25, 0.50, 0.75, 1.

We call this renewal process of Mittag-Leffler type the fractional Poisson process, see
e.g., [1,4,6,8–11,27,41,42], and [7,43], or the Mittag-Leffler renewal process or the Mittag-Leffler waiting
time process.

To analyze it we go into the Laplace domain where we have

Ψ̃(s) =
sβ−1

1 + sβ
, φ̃(s) =

1

1 + sβ
(3.2)
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If there is no danger of misunderstanding we will not decorate Ψ and φ with the index β. The special
choice β = 1 gives us the standard Poisson process with Ψ1(t) = φ1(t) = exp (−t).

Whereas the Poisson process has finite mean waiting time (that of its standard version is equal to 1),
the fractional Poisson process (0 < β < 1 ) does not have this property. In fact,

〈T 〉=
∫ ∞
0

tφ(t) dt = β
sβ−1

(1 + sβ)2

∣∣∣∣
s=0

=

{
1 , β = 1 ,

∞ , 0 < β < 1 .
(3.3)

Let us calculate the renewal function m(t). Inserting φ̃(s) = 1/(1 + sβ) into Equation (2.11) and taking
w(x) = δ(x − 1) as in Section 2, we find for the sojourn density of the counting function N(t) the
expressions ˜̃p(κ, s) =

sβ−1

1 + sβ − e−κ
=

sβ−1

1 + sβ

∞∑
n=0

e−nκ

(1 + sβ)n
(3.4)

and
p̃(κ, t) = Eβ

(
−(1− e−κ)tβ

)
(3.5)

and then
m(t) = − ∂

∂κ
p̃(κ, t)|κ=0 = e−κtβE ′β

(
−(1− e−κ)tβ

)∣∣
κ=0

(3.6)

Using E ′β(0) = 1/Γ(1 + β) now yields

m(t) =

 t , β = 1

tβ

Γ(1 + β)
, 0 < β < 1

(3.7)

This result can also be obtained by plugging φ̃(s) = 1/(1 + sβ) into the first equation in (2.17) which
yields m̃(s) = 1/sβ+1 and then by Laplace inversion Equation (3.7).

Using general Taylor expansion

Eβ(z) =
∞∑
n=0

E
(n)
β

n!
(z − b)n (3.8)

in Equation (3.5) with b = −tβ we get

p̃(κ, t) =
∞∑
n=0

tnβ

n!
E

(n)
β (−tβ) e−nκ

p(x, t) =
∞∑
n=0

tnβ

n!
E

(n)
β (−tβ) δ(x− n)

(3.9)

and, by comparison with Equation (2.12), the counting number probabilities

pn(t) = P{N(t) = n} =
tnβ

n!
E

(n)
β (−tβ) (3.10)

Observing from Equation (3.4)

˜̃p(κ, s) =
sβ−1

1 + sβ

∞∑
n=0

e−nκ

(1 + sβ)n
(3.11)



Axioms 2015, 4 329

and inverting with respect to κ,

p̃(x, s) =
sβ−1

1 + sβ

∞∑
n=0

δ(x− n)

(1 + sβ)n
(3.12)

we finally identify

p̃n(s) =
sβ−1

(1 + sβ)n+1
÷ tnβ

n!
E

(n)
β (−tβ) = pn(t) (3.13)

En passant we have proved an often cited special case of an inversion formula by Podlubny (1999) [44],
Equation (1.80).

For the Poisson process with intensity λ > 0 we have a well-known infinite system of ordinary
differential equations (for t ≥ 0), see e.g., Khintchine [45,46],

p0(t) = e−λt ,
d

dt
pn(t) = λ (pn−1(t)− pn(t)) , n ≥ 1 (3.14)

with initial conditions pn(0) = 0, n = 1, 2, . . . , which sometimes even is used to define the Poisson
process. We have an analogous system of fractional differential equations for the fractional Poisson
process. In fact, from Equation (3.13) we have

(1 + sβ) p̃n(s) =
sβ−1

(1 + sβ)n
= p̃n−1(s) (3.15)

Hence
sβ p̃n(s) = p̃n−1(s)− p̃n(s) (3.16)

so in the time domain

p0(t) = Eβ(−tβ) , ∗D
β
t pn(t) = pn−1(t)− pn(t) , n ≥ 1 (3.17)

with initial conditions pn(0) = 0, n = 1, 2, . . . , where ∗D
β
t denotes the time-fractional derivative of

Caputo type of order β, see Appendix A. It is also possible to introduce and define the fractional Poisson
process by this difference-differential system.

Let us note that by solving the system (3.17), Beghin and Orsingher in [8] introduce what they call the
“first form of the fractional Poisson process” , and in [10] Meerschaert et al. show that this process is a
renewal process with Mittag-Leffler waiting time density as in (3.1), hence is identical with the fractional
Poisson process.

Up to now we have investigated the fractional Poisson counting process N = N(t) and found
its probabilities pn(t) in Equation (3.10). To get the corresponding Erlang probability densities
qn(t) = q(t, n), densities in t, evolving in n = 0, 1, 2 . . ., we find by Equation (2.21) via telescope
summation

qn(t) = β
tnβ−1

(n− 1)!
E

(n)
β

(
−tβ

)
, 0 < β ≤ 1 (3.18)

We leave it as an exercise to the readers to show that in Equation (3.9) interchange of differentiation and
summation is allowed.

Remark: With β = 1 we get the corresponding well-known results for the standard Poisson process.
The counting number probabilities are

pn(t) =
tn

n!
e−t , n = 0, 1, 2, . . . , t ≥ 0 (3.19)
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and the Erlang densities

qn(t) =
tn−1

(n− 1)!
e−t , n = 1, 2, 3, . . . , , t ≥ 0 (3.20)

By rescalation of time we obtain

pn(t) =
(λt)n

n!
e−λt , n = 0, 1, 2, . . . , , t ≥ 0 (3.21)

for the classical Poisson process with intensity λ and

qn(t) = λ
(λt)n−1

(n− 1)!
e−λt , n = 1, 2, 3, . . . , , t ≥ 0 (3.22)

for the corresponding Erlang process.

4. The Stable Subordinator and the Wright Process

Let us denote by gβ(t) the extremal Lévy stable density of order β ∈ (0, 1] and support in t ≥ 0 whose
Laplace transform is g̃β(s) = exp (−sβ), that is

t ≥ 0 , gβ(t) ÷ exp (−sβ) , Re(s) ≥ 0 , 0 < β ≤ 1 (4.1)

The topic of Lévy stable distributions is treated in several books on probability and stochastic processes,
see e.g., Feller (1971) [47], Sato (1999) [48]; an overview of the analytical and graphical aspects of the
corresponding densities is found in Mainardi et al. (2001) [49], where an ad hoc notation is used.

From the Laplace transform correspondence (4.1) it is easy to derive the analytical expressions for

β = 1/2 (the so-called Lévy-Smirmov density), g1/2(t) =
1

2
√
π
t−3/2 exp (−1/(4t)) and for the limiting

case β = 1 (the time drift), g1(t) = δ(t− 1), where δ denotes the Dirac generalized function.
We note that the stable density (4.1) can be expressed in terms of a function of the Wright type.

In fact, with the M-Wright function from Appendix A of this paper (see Appendix F of Mainardi’s
book [50] for more details), we have

gβ(t) =
β

tβ+1
Mβ(t−β) (4.2)

The renewal process with waiting time density

φ(t) = gβ(t) (4.3)

was considered in detail by Mainardi et al. (2000,2005,2007) [14–16]. We call this process the Wright
renewal process because the corresponding survival function Ψ(t) and the waiting time density φ(t) are
expressed in terms of certain Wright functions. So we distinguish it from the so called Mittag-Leffler
renewal process, treated in the previous Section as fractional Poisson process. More precisely, recalling
the Wright functions from the Appendix A, we have for t ≥ 0,

Ψ(t) =

1−W−β,1
(
− 1

tβ

)
, 0 < β < 1,

Θ(t)−Θ(t− 1), β = 1,
from Ψ̃(s) =

1− e−s
β

s
(4.4)
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φ(t) =

1
t
W−β,0

(
− 1

tβ

)
, 0 < β < 1,

δ(t− 1), β = 1,
from φ̃(s) = e−s

β

(4.5)

where Θ denotes the unit step Heaviside function. The functions Ψ(t) and φ(t) are plotted versus time
for some values of β in Figure 2.
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Figure 2. The functions Ψ(t) (left) and φ(t) (right) versus t (10−2 < t < 102) for the
renewal processes of Wright type with β = 0.25, 0.50, 0.75, 1. For β = 1 the reader would
recognize the Box function (extended up to t = 1) at left and the delta function (centred in
t = 1) at right.

It is relevant to note the Laplace transform connecting the two transcendental functions Mβ and Eβ

Mβ(t) ÷ Eβ(−s) , 0 < β ≤ 1 (4.6)

By the stable subordinator of order β ∈ (0, 1] we mean the stochastic process t = t(x) that has
sojourn density in t ≥ 0, evolving in x ≥ 0 provided by the Laplace transform correspondence,

f̃(s, x) = e−xs
β

÷ f(t, x) = x−1/β gβ
(
x−1/β t

)
=

β

tβ+1
x1+1/βMβ(xt−β) (4.7)

This process is monotonically increasing: for this reason it is used in the context of time change and
subordination in fractional diffusion processes.

We discretize the process t = t(x) by restricting x to run through the integers n = 0, 1, 2, . . . .
The resulting discretized version is a renewal process happening in pseudo-time x ≥ 0 with jumps in
pseudo-space t ≥ 0 having density gβ(t). Inverting this discretized stable subordinator we obtain a
counting number process x = N = N(t) with waiting time density and jump density

φ(t) = gβ(t) , w(x) = δ(x− 1) (4.8)

Because here the waiting time density is given by a function of Wright type we call this process the
Wright renewal process, or simply the Wright process. Immediately we get its Erlang densities (in
t ≥ 0, evolving in x = n = 0, 1, 2, . . .)

qn(t) = φ∗n(t) ÷ e−ns
β

(4.9)
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so that, in view of (4.7) with x = n,

qn(t) = f(t, n) = n−1/β gβ
(
n−1/β t

)
(4.10)

In the special case β = 1 we have qn(t) = δ(t− n).
We observe that this counting process gives us precise snapshots at x = 0, 1, 2, of the stable

subordinator t = t(x).
Using (4.9) in (2.14) we find the counting number probabilities in time and Laplace domain

pn(t) = (Ψ ∗ φ∗n)(t) ÷ p̃n(s) =
1− e−s

β

s
e−ns

β

=
e−ns

β − e−(n+1)sβ

s
(4.11)

hence

pn(t) =

∫ t

0

(qn(t′)− qn+1(t
′)) dt′ (4.12)

according to (2.19).
With the probability distribution function

Gβ(t) =

∫ t

0

gβ(t′) dt′ (4.13)

we get
pn(t) = Gβ

(
n−1/βt

)
−Gβ

(
(n+ 1)−1/βt

)
(4.14)

In the limiting case β = 1 we have

G1(t) =

∫ t

0

δ(t′ − 1)dt′ =

{
0 for t < 1

1 for t ≥ 1
(4.15)

as a function continuous from the right, and we calculate

pn(t) =

{
0 for 0 < t < n , and for t ≥ n+ 1

1 for n ≤ t < n+ 1
(4.16)

For the renewal function we obtain its Laplace transform from (2.17)

m̃(s) =
e−s

β

s(1− e−sβ)
=

1

s

∞∑
n=1

e−ns
β

(4.17)

so that

m(t) =
∞∑
n=1

∫ t

0

qn(t′) dt′ =
∞∑
n=1

Gβ

(
n−1/βt

)
(4.18)

We do not know an explicit expression for this sum if 0 < β < 1. However, in the limiting case β = 1

we obtain
m(t) = [t] = N(t) (4.19)

Using (4.17) we investigate the asymptotic behaviour of m(t) for t → ∞. We have for s → 0 m̃(s) ∼
1/s1+β and thus, by Tauber theory, see e.g., Feller (1971) [47],

m(t) ∼ tβ

Γ(1 + β)
for t→∞ (4.20)
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Remember, for the fractional Poisson process, we had found

m(t) =
tβ

Γ(1 + β)
for all t ≥ 0 (4.21)

Remark: A rescaled version of the discretized stable subordinator can be used for producing closely
spaced precise snapshots of a true particle trajectory of a space-time fractional diffusion process, see
e.g., the recent chapter by Gorenflo and Mainardi (2011) [22] on parametric subordination.

5. The Diffusion Limits for the Fractional Poisson and the Wright Processes

In a CTRW we can, with positive scaling factor h and τ, replace the jumpsX by jumpsXh = hX , the
waiting times T by waiting times Tτ = τT . This leads to the rescaled jump density wh(x) = w(x/h)/h

and the rescaled waiting time density φτ(t) = φ(t/τ)/τ and correspondingly to the transforms
ŵh(κ) = ŵ(hκ), φ̃τ(s) = φ̃(τs).

For the sojourn density uh,τ(x, t), density in x evolving in t, we obtain from (2.9) in the
transform domain ̂̃uh,τ(κ, s) =

1− φ̃(τs)

s

1

1− φ̃(τs) ŵ(hκ)
(5.1)

where, if w(x) has support on x ≥ 0 we can work with the Laplace transform instead of the Fourier
transform (replace the ̂ by ˜ ). If there exists between h and τ a scaling relation R (to be introduced
later) under which u(x, t) tends for h→ 0, τ→ 0 to a meaningful limit v(x, t) = u0,0(x, t), then we call
the process x = x(t) with this sojourn density a diffusion limit. We find it via

̂̃v(κ, s) = lim
h,τ→0(R)

̂̃uh,τ(κ, s) (5.2)

and Fourier-Laplace (or Laplace-Laplace) inversion.
Remark: This diffusion limit is a limit in the weak sense (convergence in distribution of the CTRW to

the diffusion limit). The mathematical background consists in the application of the Fourier (or Laplace)
continuity theorem of probability theory for fixed time t.

We will now find that the counting numbers of the fractional Poisson process and the Wright process
have the same diffusion limit, namely the inverse stable subordinator. The two corresponding Erlang
processes have the same diffusion limit, namely the stable subordinator. For t → ∞ the renewal
functions have the same asymptotic behaviour, namely m(t) ∼ tβ/Γ(1 + β). Here, in the case of
the fractional Poisson process, we can replace the sign ∼ of asymptotics by the sign = of equality for all
t ≥ 0.

To prove these statements we need the Laplace transform of the relevant functions φ(t) and w(x).
For the fractional Poisson process we have

φ(t) =
d

dt
Eβ(−tβ) ÷ φ̃(s) =

1

1 + sβ
, w(x) = δ(x− 1) ÷ w̃(κ) = exp (−κ)

For the Wright process we have

φ(t) = gβ(t) ÷ φ̃(s) = exp (−sβ) , w(x) = δ(x− 1) ÷ w̃(κ) = exp (−κ)
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In all cases we have, for fixed s and κ

φ̃(τs) ∼ 1− (τs)β as τ→ 0 , w̃(hκ) ∼ 1− (hκ) as h→ 0 ,

and straightforwardly we obtain for the sojourn densities in both cases, by use of (5.1) with p in place of
u and ̂ replaced by ˜ ˜̃ph,τ(κ, s) ∼ τβ sβ−1

τβ sβ + h κ
, for τ→ 0 , h→ 0 (5.3)

Using the scaling relationR
h = τβ (5.4)

we obtain ˜̃p0,0(κ, s) =
sβ−1

sβ + κ
(5.5)

By partial Laplace inversions we get two equivalent representations

p0,0(x, t) = L−1κ

{
Eβ(−κtβ)

}
= L−1s

{
sβ−1 exp (−xsβ)

}
(5.6)

leading to the density of the inverse stable subordinator

p0,0(x, t) = t−βMβ(x/tβ) = J1−β
t f(t, x) (5.7)

where Mβ and J1−β
t denote respectively the M -Wright function and the Riemann-Liouville fractional

integral introduced in Appendix A, and f(t, x) the stable subordinator given by Equation (4.7).
Remark: In (4.7) and (5.7) the densities of the stable and the inverse stable subordinator are both

represented via the M -Wright function.

The Diffusion Limit for the Erlang Process

In the Erlang process the roles of space and time, likewise of jumps and waiting times, are
interchanged. In other words we treat x ≥ 0 as a pseudo-time variable and t ≥ 0 as a pseudo-space
variable. For the resulting sojourn density q(t, x), we have from interchanging in (5.1) for h → 0 and
τ→ 0, ˜̃qh,τ(s, κ) =

1− w̃(hκ)

k

1

1− w̃(hκ) φ̃(τs)
∼ h

hκ + (τs)β
(5.8)

Again using the scaling relationR in Equation (5.4) we find

˜̃q0,0(s, κ) =
1

κ + sβ
, (5.5′)

which is the Laplace-Laplace transform of the density of stable subordinator of Section 4. In fact, by
partial Laplace inversion,

q̃0,0(s, x) = exp (−xsβ) = f̃(s, x) , (5.9)

and it follows that
q0,0(t, x) = f(t, x) , x ≥ 0 , t ≥ 0 . (5.10)

See (4.7) for its explicit representation as a rescaled stable density expressed via a M -Wright function.
We get the same result by continualization of the discretized stable subordinator. Replace in

Equations (4.9) and (4.10) the discrete variable n by the continuous variable x.
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6. Conclusions

The fractional Poisson process and the Wright process (as discretization of the stable subordinator)
along with their diffusion limits play eminent roles in theory and simulation of fractional diffusion
processes. Here we have analyzed these two processes, concretely the corresponding counting number
and Erlang processes, the latter being the processes inverse to the former. Furthermore we have obtained
the diffusion limits of all these processes by well-scaled refinement of waiting times and jumps.
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Appendix A: Operators, Transforms and Special Functions

For the reader’s convenience here we present a brief introduction to the basic notions required for
the presentation and analysis of the renewal processes to be treated, including essentials on fractional
calculus and special functions of Mittag-Leffler and Wright type.

Thereby we follow our earlier papers concerning related topics, see [6,18,21,22,25–27,49,51–56], and
our recent monograph on Mittag-Leffler Functions and Related Topics [57].

For more details on general aspects the interested reader may consult the treatises, listed in order of
publication time, by Podlubny [44], Kilbas and Saigo [58], Kilbas, Srivastava and Trujillo [59], Mathai
and Haubold [60], Mathai, Saxena and Haubold [61], Mainardi [50], Diethelm [62], Baleanu, Diethelm,
Scalas and Trujillo [41], Uchaikin [43], Atanacković, Pilipovíc, Stanković and Zorica [63].

A.1. Fourier and Laplace Transforms

By IR (IR +, IR +
0 ) we mean the set of all (positive, non-negative) real numbers, and by C the set

of complex numbers. It is known that the Fourier transform is applied to functions defined in L1(IR )

whereas the Laplace transform is applied to functions defined in Lloc(IR +). In our cases the arguments
of the original function are the space–coordinate x (x ∈ IR or x ∈ IR +

0 ) and the time–coordinate t
(t ∈ IR +

0 ). We use the symbol÷ for the juxtaposition of a function with its Fourier or Laplace transform.
A look at the superscript ̂ for the Fourier transform, ˜ for the Laplace transform reveals their relevant
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juxtaposition. We use x as argument (associated to real κ) for functions Fourier transformed, and x or t
as argument (associated to complex κ or s, respectively) for functions Laplace transformed.

f(x) ÷ f̂(κ) :=

∫ +∞

−∞
eiκx f(x) dx , Fourier transform.

f(x) ÷ f̃(κ) :=

∫ ∞
0

e−κx f(x) dx , space-Laplace transform.

f(t) ÷ f̃(s) :=

∫ ∞
0

e−st f(t) dx , time-Laplace transform

A.2. Convolutions

(u ∗ v)(x) :=

∫ +∞

−∞
u(x− x′) v(x′) dx′ , Fourier convolution

(u ∗ v)(t) :=

∫ t

0

u(t− t′) v(t′) dt′ , Laplace convolution

The meaning of the connective ∗ will be clear from the context. For convolution powers we have:

u∗0(x) = δ(x) , u∗1(x) = u(x) , u∗(n+1)(x) = (u∗n ∗ u)(x)

u∗0(t) = δ(t) , u∗1(t) = u(t) , u∗(n+1)(t) = (u∗n ∗ u)(t)

where δ denotes the Dirac generalized function.

A.3. Fractional Integral

The Riemann-Liouville fractional integral of order α > 0, for a sufficiently well-behaved function
f(t) (t ≥ 0), is defined as

Jα
t f(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1 f(τ) dτ , α > 0

by convention as f(t) for α = 0. Well known are the semi-group property

Jα
t J

β
t = Jα+β

t = Jβ
t J

α
t , α , β ≥ 0

and the Laplace transform pair

Jα
t f(t)÷ f̃(s)

sα
, α ≥ 0

A.4. Fractional Derivatives

The Riemann-Liouville fractional derivative operator of order α > 0, Dα
t , is defined as the left inverse

operator of the corresponding fractional integral Jα
t . Limiting ourselves to fractional derivatives of order

α ∈ (0, 1) we have, for a sufficiently well-behaved function f(t) (t ≥ 0),

Dα
t f(t) := D1

t J
1−α
t f(t) =

1

Γ(1− α)

d
dt

∫ t

0

f(τ)

(t− τ)α
dτ , 0 < α < 1
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while the corresponding Caputo derivative is

∗D
α
t f(t) :=J1−α

t D1
t f(t)=

1

Γ(1− α)

∫ t

0

f (1)(τ)

(t− τ)α
dτ

=Dα
t f(t)− f(0+)

t−α

Γ(1− α)
= Dα

t

[
f(t)− f(0+)

]
Both derivatives yield the ordinary first derivative as α→ 1− but for α→ 0+ we have

D0
t f(t) = f(t) , ∗D

0
t f(t) = f(t)− f(0+)

We point out the major utility of the Caputo fractional derivative in treating initial-value problems with
Laplace transform. We have

L[ ∗D
α
t f(t); s] = sαf̃(s)− sα−1 f(0+) , 0 < α ≤ 1

In contrast the Laplace transform of the Riemann-Liouville fractional derivative needs the limit at
zero of a fractional integral of the function f(t).

Note that both types of fractional derivative may exhibit singular behaviour at the origin t = 0+.

A.5. Mittag-Leffler and Wright Functions

The Mittag-Leffler function of parameter α is defined as

Eα(z) :=
∞∑
n=0

zn

Γ(αn+ 1)
, α > 0 , z ∈ C

It is entire of order 1/α. Let us note the trivial cases{
E1(±z) = exp (±z)

E2 (+z2) = cosh (z) , E2 (−z2) = cos (z)

Without changing the order 1/α the Mittag-Leffler function can be generalized by introducing an
additional (arbitrary) parameter β.

The Mittag-Leffler function of parameters α,β is defined as

Eα,β(z) :=
∞∑
n=0

zn

Γ(αn+ β)
, α > 0 , β, z ∈ C

Laplace transforms of Mittag-Leffler functions
For our purposes we need, with 0 < ν ≤ 1 and t ≥ 0, the Laplace transform pairs

Ψ(t)=Eβ(−tν) ÷ Ψ̃(s) =
sν−1

1 + sν

φ(t)=− d

dt
Eν(−tν) = tν−1Eν,ν(−tν) ÷ φ̃(s)=

1

1 + sν

Of high relevance is the algebraic decay of Ψ(t) and φ(t) as t→∞:
Ψ(t) ∼ sin(νπ)

π

Γ(ν)

tν
,

φ(t) ∼ sin(νπ)

π

Γ(ν + 1)

tν+1
,
t→ +∞
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Furthermore Ψ(t) = Eν(−tν) is the solution of the fractional relaxation equation with the
Caputo derivative

∗D
ν
t u(t) = −u(t) , t ≥ 0 , u(0+) = 1

whereas φ(t) = − d

dt
Eν(−tν) is the solution of the fractional relaxation equation with the

Riemann-Liouville derivative

Dν
t u(t) = −u(t) , t ≥ 0 , lim

t→0+
J1−ν
t u(t) = 1

We refer to the survey paper by Haubold, Mathai and Saxena [64], to our recent monograph [57] and
to our papers [21,22,25–27,51] for the relevance of Mittag-Leffler functions in probability theory and
stochastic processes with particular regard to theory of continuous time random walk and space-time
fractional diffusion, and in power law asymptotics. Particularly worth to be mentioned is the pioneering
paper by Hilfer and Anton [13]. They show that for transforming a general evolution equation for
continuous time random walk into the time fractional version of the Kolmogorov-Feller equation a
waiting time law expressible via a Mittag-Leffler type function is required.

The Wright function is defined as

Wλ,µ(z) :=
∞∑
n=0

zn

n! Γ(λn+ µ)
, λ > −1 , µ ∈ C , z ∈ C

We distinguish the Wright functions of first kind (λ ≥ 0) and second kind (−1 < λ < 0). The case
λ = 0 is trivial since W0,µ(z) = e z/Γ(µ) . The Wright function is entire of order 1/(1 + λ) hence of
exponential type only if λ ≥ 0.

Laplace transforms of the Wright functions
For the Wright function of the first kind, being entire of exponential type, the Laplace transform can

be obtained by transforming the power series term by term:

Wλ,µ(t) ÷ 1

s
Eλ,µ

(
1

s

)
, λ ≥ 0

For the Wright function of the second kind, denoting ν = |λ| ∈ (0, 1) we have with µ > 0 for simplicity,
we have

W−ν,µ(−t) ÷ Eν,µ+ν(−s) , 0 < ν < 1

We note the minus sign in the argument in order to ensure the the existence of the Laplace transform
thanks to the Wright asymptotic formula valid in a certain sector symmetric to and including the negative
real axis.

Stretched Exponentials as Laplace transforms of Wright functions We outline the following Laplace
transform pairs related to the stretched exponentials in the transform domain, useful for our purposes,

1

t
W−ν,0

(
− 1

tν

)
÷ e−s

ν

W−ν,1−ν

(
− 1

tν

)
÷ e−s

ν

s1−ν
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W−ν,1

(
− 1

tν

)
÷ e−s

ν

s

For ν = 1/2 we have the three sister functions related to the diffusion equation available in most Laplace
transform handbooks

1

2
√
π
t−3/2 e−1/(4t) ÷ e−s

1/2

1√
π
t−1/2 e−1/(4t) ÷ e−s

1/2

s1/2

erfc
(

1

2t1/2

)
÷ e−s

1/2

s

Among the Wright functions of the second kind a fundamental role in fractional diffusion equations
is played by the so called M -Wright function, see e.g., [49,50,54].

The M -Wright function is defined as

Mν(z) :=W−ν,1−ν(−z)=
∞∑
n=0

(−z)n

n!Γ[−νn+ (1− ν)]
=

1

π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn)

with z ∈ C and 0 < ν < 1. Special cases are

M1/2(z)=
1√
π

exp
(
− z2/4

)
, M1/3(z)=32/3Ai

(
z/31/3

)
where Ai denotes the Airy function, see e.g., [65].

The asymptotic representation of the M -Wright function
Choosing as a variable t/ν rather than t, the computation of the asymptotic representation as t→∞

by the saddle-point approximation yields:

Mν(t/ν) ∼ a(ν) t(ν−1/2)/(1−ν)exp
[
−b(ν) t1/(1−ν)

]
where

a(ν) =
1√

2π (1− ν)
> 0 , b(ν) =

1− ν

ν
> 0

Mittag-Leffler function as Laplace transforms of M -Wright function

Mν(t) ÷ Eν(−s) , 0 < ν < 1 , t ≥ 0 , s ≥ 0

Stretched Exponentials as Laplace transforms of M -Wright functions

ν

tν+1
Mν (1/tν) ÷ e−s

ν

, 0 < ν < 1 , t ≥ 0 , s ≥ 0

1

tν
Mν (1/tν) ÷ e−s

ν

s1−ν
, 0 < ν < 1 , t ≥ 0 , s ≥ 0

Note that exp (−sν) is the Laplace transform of the extremal (unilateral) stable density L−νν (t), which
vanishes for t < 0, so that, introducing the Riemann-Liouville fractional integral, we have

1

tν
Mν (1/tν) = J1−ν

t

{
L−νν (t)

}
= J1−ν

t

{ ν

tν+1
Mν (1/tν)

}
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Appendix B: Collection of Results

B.1. General Renewal Process

Waiting time density: φ(t); Survival function: Ψ(t) =

∫ ∞
t

φ(t′) dt′

(a) The counting number process x = N(t) has probability density function (density in x ≥ 0 and
evolving in t ≥ 0):

p(x, t) =
∞∑
n=0

pn(t) δ(x− n) ,

and counting probabilities
pn(t) = (Ψ ∗ φ∗n) (t) .

(b) The Erlang process t = t(n), inverse to the counting process has probability density function
(density in t, evolving in n = 0, 1, 2, . . . )

qn(t) = q(t, n) = φ∗n(t) ,

with

qn(t) =
d

dt
Qn(t) , Qn(t) =

∞∑
k=n

pk(t) ,

where qn(t), Qn(t) are the Erlang densities and probability distribution functions, respectively. Note that
pn(t) = (Ψ ∗ qn) (t).

B.2. Special Cases

(α) The fractional Poisson process

φ(t) = − d

dt
Eβ(−tβ) ÷ φ̃(s) =

1

1 + sβ
,

pn(t) =
tnβ

n!
E

(n)
β

(
−tβ

)
.

The Erlang densities are

qn(t) = β
tnβ−1

(n− 1)!
E

(n)
β

(
−tβ

)
.

(β) The Wright process
φ(t) = gβ(t) ÷ g̃β(s) = exp (−sβ) ,

pn(t) = Gβ

(
n−1/βt

)
−Gβ

(
(n+ 1)−1/βt

)
.

The Erlang densities are
qn(t) = n−1/β gβ

(
n−1/β t

)
.
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