dc.contributor.author
Wilming, Henrik
dc.contributor.author
Kastoryano, Michael J.
dc.contributor.author
Werner, Albert H.
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2018-06-08T10:27:54Z
dc.date.available
2017-05-18T07:40:06.032Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20489
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23792
dc.description.abstract
A cornerstone of the theory of phase transitions is the observation that many-
body systems exhibiting a spontaneous symmetry breaking in the thermodynamic
limit generally show extensive fluctuations of an order parameter in large but
finite systems. In this work, we introduce the dynamical analog of such a
theory. Specifically, we consider local dissipative dynamics preparing an
equilibrium steady-state of quantum spins on a lattice exhibiting a discrete
or continuous symmetry but with extensive fluctuations in a local order
parameter. We show that for all such processes, there exist asymptotically
stationary symmetry-breaking states, i.e., states that become stationary in
the thermodynamic limit and give a finite value to the order parameter. We
give results both for discrete and continuous symmetries and explicitly show
how to construct the symmetry-breaking states. Our results show in a simple
way that, in large systems, local dissipative dynamics satisfying detailed
balance cannot uniquely and efficiently prepare states with extensive
fluctuations with respect to local operators. We discuss the implications of
our results for quantum simulators and dissipative state preparation.
en
dc.rights.uri
http://publishing.aip.org/authors/web-posting-guidelines
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Emergence of spontaneous symmetry breaking in dissipative lattice systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Journal of Mathematical Physics. - 58 (2017), 3, Artikel Nr.
dcterms.bibliographicCitation.doi
10.1063/1.4978328
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1063/1.4978328
refubium.affiliation
Mathematik und Informatik
de
refubium.mycore.fudocsId
FUDOCS_document_000000027019
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000008202
dcterms.accessRights.openaire
open access