dc.contributor.author
Groß, Marcus
dc.contributor.author
Rendtel, Ulrich
dc.date.accessioned
2018-06-08T08:22:46Z
dc.date.available
2015-09-07T04:35:33.328Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/19972
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23401
dc.description.abstract
In self-reported data usually a phenomenon called `heaping' occurs, i.e.
survey participants round the values of their income, weight or height to some
degree. Additionally, respondents may be more prone to round off or up due to
social desirability. By ignoring the heaping process a severe bias in terms of
spikes and bumps is introduced when applying kernel density methods naively to
the rounded data. A generalized Stochastic Expectation Maximization (SEM)
approach accounting for heaping with potentially asymmetric rounding behaviour
in univariate kernel density estimation is presented in this work. The
introduced methods are applied to survey data of the German Socio-Economic
Panel and exhibit very good performance simulations.
en
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000319-4
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000006-7
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Measurement error
dc.subject
Self-reported data
dc.subject
Kernel density estimation
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft
dc.title
Kernel Density Estimation for Heaped Data
refubium.affiliation
Wirtschaftswissenschaft
de
refubium.mycore.fudocsId
FUDOCS_document_000000023061
refubium.series.issueNumber
2015,27 : Economics
refubium.series.name
Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin
refubium.mycore.derivateId
FUDOCS_derivate_000000005368
dcterms.accessRights.openaire
open access