dc.contributor.author
Weidenhammer, Beate
dc.contributor.author
Schmid, Timo
dc.contributor.author
Salvati, Nicola
dc.contributor.author
Tzavidis, Nikos
dc.date.accessioned
2018-06-08T08:13:10Z
dc.date.available
2016-06-27T19:35:05.103Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/19588
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23225
dc.description.abstract
In this paper we will present recent work on a new unit-level small area
methodology that can be used with continuous and discrete outcomes. The
proposed method is based on constructing a model-based estimator of the
distribution function by using a nested-error regression model for the
quantiles of the target outcome. A general set of domain-specific parameters
that extends beyond averages is then estimated by sampling from the estimated
distribution function. For fitting the model we exploit the link between the
Asymmetric Laplace Distribution and maximum likelihood estimation for quantile
regression. The specification of the distribution of the random effects is
considered in some detail by exploring the use of parametric and non-
parametric alternatives. The use of the proposed methodology with discrete
(count) outcomes requires appropriate transformations, in particular
jittering. For the case of discrete outcomes the methodology relaxes the
restrictive assumptions of the Poisson generalised linear mixed model and
allows for what is potentially a more flexible mean-variance relationship.
Mean Squared Error estimation is discussed. Extensive model-based simulations
are used for comparing the proposed methodology to alternative unit-level
methodologies for estimating a broad range of complex parameters.
en
dc.format.extent
26 Seiten
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000532-8
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000006-7
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Asymmetric Laplace Distribution
dc.subject
Generalized linear mixed model
dc.subject
Non-parametric estimation
dc.subject
Small area estimation
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft
dc.title
A Unit-level Quantile Nested Error Regression Model for Domain Prediction with
Continuous and Discrete Outcomes
refubium.affiliation
Wirtschaftswissenschaft
de
refubium.mycore.fudocsId
FUDOCS_document_000000024912
refubium.series.issueNumber
2016,12 : Economics
refubium.series.name
Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin
refubium.mycore.derivateId
FUDOCS_derivate_000000006694
dcterms.accessRights.openaire
open access