dc.contributor.author
Cuevas, Erik
dc.contributor.author
Zaldivar, Daniel
dc.contributor.author
Rojas, Raúl
dc.date.accessioned
2018-06-08T07:50:48Z
dc.date.available
2009-06-23T09:53:07.592Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18844
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-22528
dc.description.abstract
The extended Kalman filter (EKF) has been used as the standard technique for
performing recursive nonlinear estimation in vision tracking. In this report,
we present an alternative filter with performance superior to that of the EKF.
This algorithm, referred to as the Particle filter. Particle filtering was
originally developed to track objects in clutter (multi-modal distribution).
We present as results the filter behavior when exist objects with similar
characteristic to the object to track.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000021-2
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Particle filter in vision tracking
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik

refubium.mycore.fudocsId
FUDOCS_document_000000002402
refubium.resourceType.isindependentpub
no
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
05-13
refubium.mycore.derivateId
FUDOCS_derivate_000000000474
dcterms.accessRights.openaire
open access