Eines der zur Zeit schnellsten Verfahren zur Faktorisierung ganzer Zahlen ist das ``Quadratische Sieb'' (engl. ``quadratic sieve factorization method''), das 1981 von Carl Pomerance entwickelt wurde. Wir beschreiben im Folgenden die Basisversion des Quadratischen Siebs sowie die Variante des Quadratischen Siebs mit mehrfachen Polynomen, das sogenannte ``Multiple Polynomial Quadratic Sieve'' MPQS, das unabhängig von J. Davis und D. Holdridge bzw. P. Montgomery gefunden wurde. Bei der Darstellung der Verfahren orientieren wir uns an [Buchmann 2010], [Crandall & Pomerance 2005], [Esslinger et al. 2011], [Pomerance 1996], 'Quadratisches Sieb' in [Wikipedia de] und 'quadratic sieve' in [Wikipedia en].