dc.contributor.author
Berninger, Heiko
dc.contributor.author
Kornhuber, Ralf
dc.contributor.author
Sander, Oliver
dc.date.accessioned
2018-06-08T07:43:35Z
dc.date.available
2014-07-16T09:07:37.782Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18578
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-22272
dc.description.abstract
We consider the Richards equation on a domain that is decomposed into
nonoverlapping layers, i.e., the decomposition has no cross points. We assume
that the saturation and permeability functions are space-independent on each
subdomain. Kirchhoff transformation of each subdomain problem separately then
leads to a set of semi-linear equations, which can each be solved efficiently
using monotone multigrid. The transformed subdomain problems are coupled by
nonlinear continuity and flux conditions. This nonlinear coupled problem can
be solved using substructuring methods like the Dirichlet-Neumann or Robin
iteration. We give several numerical examples showing the discretization
error, the solver robustness under variations of the soil parameters and a
hydrological example with four soil layers and surface water.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000226-9
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
domain decomposition
dc.subject
finite elements
dc.subject
descent methods
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
A multidomain discretization of the Richards equation in layered soil
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000020605
refubium.mycore.reportnumber
A /02/2013
refubium.series.issueNumber
Preprints, Serie A: Mathematik
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
A /02/2013
refubium.mycore.derivateId
FUDOCS_derivate_000000003713
dcterms.accessRights.openaire
open access