The recent theoretical discovery of fractional Chern insulators (FCIs) has provided an important new way to realize topologically ordered states in lattice models. In earlier works, on-site and nearest-neighbor Hubbard-like interactions have been used extensively to stabilize Abelian FCIs in systems with nearly flat, topologically nontrivial bands. However, attempts to use two-body interactions to stabilize non-Abelian FCIs, where the ground state in the presence of impurities can be massively degenerate and manipulated through anyon braiding, have proven very difficult in uniform lattice systems. Here, we study the remarkable effect of long-range interactions in a lattice model that possesses an exactly flat lowest band with a unit Chern number. When spinless bosons with two-body long-range interactions partially fill the lowest Chern band, we find convincing evidence of gapped, bosonic Read-Rezayi (RR) phases with non-Abelian anyon statistics. We characterize these states through studying topological degeneracies, the overlap between the ground states of two-body interactions and the exact RR ground states of three- and four-body interactions, and state counting in the particle-cut entanglement spectrum. Moreover, we demonstrate how an approximate lattice form of Haldane's pseudopotentials, analogous to that in the continuum, can be used as an efficient guiding principle in the search for lattice models with stable non-Abelian phases.