Introduction After recognition of European outbreaks of Clostridium difficile infections (CDIs) associated with the emergence of PCR ribotype 027/NAP1 in 2005, CDI surveillance at country level was encouraged by the European Centre for Disease Prevention and Control (ECDC) [1]. In 2008, an ECDC-supported European CDI survey (ECDIS) identified large intercountry variations in incidence rates and distribution of prevalent PCR ribotypes, with the outbreak-related PCR ribotype 027 being detected in 5% (range: 0–26) of the characterised isolates [2]. The surveillance period was limited to one month and the representation of European hospitals was incomplete; however, this has been the only European (comprising European Union (EU)/European Economic Area (EEA) and EU candidate countries) CDI surveillance study. The authors highlighted the need for national and European surveillance to control CDI. Yet, European countries were found to have limited capacity for diagnostic testing, particularly in terms of standard use of optimal methods and absence of surveillance protocols and a fully validated, standardised and exchangeable typing system for surveillance and/or outbreak investigation. As of 2011, 14 European countries had implemented national CDI surveillance, with various methodologies [3]. National surveillance systems have since reported a decrease in CDI incidence rate and/or prevalence of PCR ribotype 027 in some European countries [4-8]. However, CDI generally remains poorly controlled in Europe [9], and PCR ribotype 027 continues to spread in eastern Europe [10-12] and globally [13]. In 2010, ECDC launched a new project, the European C. difficile Infection Surveillance Network (ECDIS-Net), to enhance surveillance of CDI and laboratory capacity to test for CDI in Europe. The goal of ECDIS- Net was to establish a standardised CDI surveillance protocol suitable for application all over Europe in order to: (i) estimate the incidence rate and total infection rate of CDI (including recurrent CDI cases) in European acute care hospitals; (ii) provide participating hospitals with a standardised tool to measure and compare their own incidence rates with those observed in other participating hospitals; (iii) assess adverse outcomes of CDI such as complications and death; and (iv) describe the epidemiology of CDI concerning antibiotic susceptibility, PCR ribotypes, presence of tcdA, tcdB and binary toxins and detect new emerging types at local, national and European level. The primary objectives of the present study were to: (i) test the pilot protocol for the surveillance of CDI in European acute care hospitals developed by ECDIS-Net (methodology, variables and indicators); (ii) assess the feasibility and workload of collecting the required hospital data, case- based epidemiological and microbiological data; and (iii) evaluate the quality of data collected, whether in the presence or absence of existing national CDI surveillance activities. A secondary aim was to assess the relationship between patient and microbiological characteristics and in-hospital outcome of CDI to confirm the added value of collecting detailed epidemiological and microbiological data on CDI at European level.