dc.contributor.author
Dechant, A.
dc.contributor.author
Lutz, E.
dc.contributor.author
Kessler, D. A.
dc.contributor.author
Barkai, E.
dc.date.accessioned
2018-06-08T04:10:15Z
dc.date.available
2015-04-22T10:05:27.378Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/16712
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-20893
dc.description.abstract
The Green-Kubo formula relates the spatial diffusion coefficient to the
stationary velocity autocorrelation function. We derive a generalization of
the Green-Kubo formula that is valid for systems with long-range or
nonstationary correlations for which the standard approach is no longer valid.
For the systems under consideration, the velocity autocorrelation function
⟨v(t+τ)v(t)⟩ asymptotically exhibits a certain scaling behavior and the
diffusion is anomalous, ⟨x2(t)⟩≃2Dνtν. We show how both the anomalous
diffusion coefficient Dν and the exponent ν can be extracted from this scaling
form. Our scaling Green-Kubo relation thus extends an important relation
between transport properties and correlation functions to generic systems with
scale-invariant dynamics. This includes stationary systems with slowly
decaying power-law correlations, as well as aging systems, systems whose
properties depend on the age of the system. Even for systems that are
stationary in the long-time limit, we find that the long-time diffusive
behavior can strongly depend on the initial preparation of the system. In
these cases, the diffusivity Dν is not unique, and we determine its values,
respectively, for a stationary or nonstationary initial state. We discuss
three applications of the scaling Green-Kubo relation: free diffusion with
nonlinear friction corresponding to cold atoms diffusing in optical lattices,
the fractional Langevin equation with external noise recently suggested to
model active transport in cells, and the Lévy walk with numerous applications,
in particular, blinking quantum dots. These examples underline the wide
applicability of our approach, which is able to treat very different
mechanisms of anomalous diffusion.
en
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Scaling Green-Kubo Relation and Application to Three Aging Systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review X. - 4 (2014), 1, S.011022
dc.identifier.sepid
44249
dcterms.bibliographicCitation.doi
10.1103/PhysRevX.4.011022
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevX.4.011022
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000022254
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004801
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2160-3308